
A Framework for Verified Depth-First Algorithms
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1 A nondeterministic DFS implementation

theory DFS
imports

Main
Graph-Ext
Refine-Additions
../General/Misc-Additions

begin

Based on the work on the nondeterministic while combinator we develop
a depth-first-search function that works on sets rather than lists. This col-
lapses different runs of the search into a set of results, which share a common
property.

1.1 Data structures and algorithm specification

The representation of a working state.

record ( ′n) dfs-ws =
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start :: ′n — the starting node
stack :: ′n list — the search stack of the current run
wl :: ′n set list — the set of successors that still need to visited for each node
discover :: ( ′n, nat) map — mapping a node to the timestamp of their discovery
finish :: ( ′n, nat) map — mapping a node to the timestamp of the finishing, i.e.

the moment the search backtracks
counter :: nat — the counter for discover and finish

abbreviation discovered s ≡ dom (discover s)
abbreviation finished s ≡ dom (finish s)
abbreviation disc (δ) where disc s x ≡ the (discover s x )
abbreviation fin (ϕ) where fin s x ≡ the (finish s x )

As the DFS algorithm is intended to be only a framework for DFS-based
algorithm, we need to carry around a state, that is used by the concrete
implementation.

record ( ′S , ′n) dfs-sws = ( ′n) dfs-ws +
state :: ′S — the state of the implementation

The representation of the parametrized algorithm.

record ( ′S , ′n) dfs-algorithm =
dfs-cond :: ′S ⇒ bool — the condition to be satisified by the state S to continue

searching from here.
dfs-action :: ′S ⇒ ( ′S , ′n) dfs-sws ⇒ ′n ⇒ ′S — modifies the state for the current

node BEFORE visiting the successors.
dfs-post :: ′S ⇒ ( ′S , ′n) dfs-sws ⇒ ′n ⇒ ′S — modifies the state for the current

node AFTER having visited the successors (i.e. during backtracking).
dfs-remove :: ′S ⇒ ( ′S , ′n) dfs-sws ⇒ ′n ⇒ ′S — modifies the state if a node

has already been visited and is removed from the stack
dfs-start :: ′n ⇒ ′S — the starting state
dfs-restrict :: ′n set — a set of states that should not be visited

context finite-digraph
begin

The dfs-step returns a set of working states, that may be reached from the
current node. In general, it returns one state for each successor of the current
node.

fun dfs-step ′ :: ( ′S , ′n, ′X ) dfs-algorithm-scheme ⇒ ( ′S , ′n) dfs-sws ⇒ ′S ⇒ ′n ⇒
( ′n, nat) map ⇒ ( ′n, nat) map ⇒ nat ⇒ ′n set list ⇒ ′n list ⇒ (( ′S , ′n) dfs-sws)
set
where dfs-step ′ dfs S s n d f c w [] = {}
|dfs-step ′ dfs S s n d f c w (x#xs) = (if hd w = {} then {dfs-sws.make n xs

(tl w) d (f (x 7→ c)) (Suc c) (dfs-post dfs s S x )}
else {dfs-sws.make n st ′ w ′ d ′ f c ′ s ′ | e st ′ w ′

d ′ c ′ s ′. e ∈ hd w ∧
(if e ∈ dfs-restrict dfs then st ′ = x#xs ∧

w ′ = (hd w − {e})#tl w ∧ d ′ = d ∧ c ′ = c ∧ s ′ = s
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else if e ∈ dom d then st ′ = x#xs ∧ w ′

= (hd w − {e})#tl w ∧ d ′ = d ∧ c ′ = c ∧ s ′ = dfs-remove dfs s S e
else st ′ = e#x#xs ∧ w ′ = succs e#(hd

w − {e})#tl w ∧ d ′ = d(e 7→ c) ∧ c ′ = Suc c ∧ s ′ = dfs-action dfs s S e)})

definition dfs-step :: ( ′S , ′n, ′R) dfs-algorithm-scheme ⇒ ( ′S , ′n) dfs-sws ⇒ ( ′S
, ′n) dfs-sws set
where dfs-step dfs s ≡ dfs-step ′ dfs s (state s) (start s) (discover s) (finish s)
(counter s) (wl s) (stack s)

lemma dfs-step-simps[simp]:
stack s = [] =⇒ dfs-step dfs s = {}
stack s = x#xs =⇒ wl s 6= [] =⇒ hd (wl s) = {}

=⇒ dfs-step dfs s = {s(|stack := xs, wl := tl (wl s), finish := (finish s)(x 7→
counter s), counter := Suc (counter s), state := dfs-post dfs (state s) s x |)}

stack s = x#xs =⇒ wl s 6= [] =⇒ hd (wl s) 6= {}
=⇒ dfs-step dfs s = {dfs-sws.make (start s) st ′ w ′ d ′ (finish s) c ′ s ′ | e st ′ w ′

d ′ c ′ s ′. e ∈ hd (wl s) ∧
(if e ∈ dfs-restrict dfs then st ′ = x#xs ∧ w ′ = (hd (wl s) −

{e})#tl (wl s) ∧ d ′ = discover s ∧ c ′ = counter s ∧ s ′ = (state s)
else if e ∈ discovered s then st ′ = x#xs ∧ w ′ = (hd (wl s)

− {e})#tl (wl s) ∧ d ′ = discover s ∧ c ′ = counter s ∧ s ′ = dfs-remove dfs (state
s) s e

else st ′ = e#x#xs ∧ w ′ = succs e#(hd (wl s) − {e})#tl (wl
s) ∧ d ′ = (discover s)(e 7→ counter s) ∧ c ′ = Suc (counter s) ∧ s ′ = dfs-action
dfs (state s) s e)}
unfolding dfs-step-def
by (simp-all add : dfs-sws.defs)

lemma dfs-step-intros:
stack s = x#xs =⇒ wl s 6= [] =⇒ hd (wl s) = {} =⇒ s ′ = s(|stack := xs, wl :=

tl (wl s), finish := (finish s)(x 7→ counter s), counter := Suc (counter s), state :=
dfs-post dfs (state s) s x |) =⇒ s ′ ∈ dfs-step dfs s

stack s = x#xs =⇒ wl s 6= [] =⇒ hd (wl s) 6= {} =⇒ e ∈ hd (wl s) =⇒ e ∈
dfs-restrict dfs =⇒ s ′ = s(|wl := (hd (wl s) − {e})#tl (wl s)|) =⇒ s ′ ∈ dfs-step
dfs s

stack s = x#xs =⇒ wl s 6= [] =⇒ hd (wl s) 6= {} =⇒ e ∈ hd (wl s) =⇒ e /∈
dfs-restrict dfs =⇒ e ∈ discovered s =⇒ s ′ = s(|wl := (hd (wl s) − {e})#tl (wl
s), state := dfs-remove dfs (state s) s e|) =⇒ s ′ ∈ dfs-step dfs s

stack s = x#xs =⇒ wl s 6= [] =⇒ hd (wl s) 6= {} =⇒ e ∈ hd (wl s) =⇒ e /∈
dfs-restrict dfs =⇒ e /∈ discovered s =⇒ s ′ = s(| state := dfs-action dfs (state s)
s e, stack := e#x#xs, wl := succs e#(hd (wl s) − {e})#(tl (wl s)), discover :=
(discover s)(e 7→ counter s), counter := Suc (counter s)|) =⇒ s ′ ∈ dfs-step dfs s
unfolding dfs-step-def
apply (simp-all add : dfs-sws.defs)

apply (rule exI [where x=e], simp)+
done
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lemma dfs-step-cases:
assumes inv : stack s 6= [] =⇒ wl s 6= []
and [[ stack s = [] ]] =⇒ P
and

∧
x xs w ws . [[ stack s = x#xs; wl s = w#ws; w = {} ]] =⇒ P

and
∧

x xs w ws. [[ stack s = x#xs; wl s = w#ws; w 6= {} ]] =⇒ P
shows P

using assms
proof (cases stack s)

case (Cons x xs) with inv obtain w ws where w#ws = wl s by (cases wl s)
auto

with Cons assms(2−) show ?thesis by (cases w = {}) metis+
qed

lemma dfs-step-cases-elem [case-names empty restrict remove visit , cases pred :
dfs-step, consumes 2 ]:

assumes inv : s ′ ∈ dfs-step dfs s wl s 6= []
and empty :

∧
x xs w ws. [[ stack s = x#xs; wl s = w#ws; w = {} ]] =⇒

s ′ = s(|stack := xs, wl := ws, finish := (finish s)(x 7→ counter s), counter :=
Suc (counter s), state := dfs-post dfs (state s) s x |) =⇒ P

and restrict :
∧

e x xs w ws. [[ stack s = x#xs; wl s = w#ws; w 6= {}; e ∈ w ; e
∈ dfs-restrict dfs ]] =⇒

s ′ = s(| wl := (w − {e})#ws |) =⇒ P
and remove:

∧
e x xs w ws. [[ stack s = x#xs; wl s = w#ws; w 6= {}; e ∈ w ; e

/∈ dfs-restrict dfs; e ∈ discovered s ]] =⇒
s ′ = s(| wl := (w − {e})#ws, state := dfs-remove dfs (state s) s e|) =⇒ P

and visit :
∧

e x xs w ws. [[ stack s = x#xs; wl s = w#ws; w 6= {}; e ∈ w ; e /∈
dfs-restrict dfs; e /∈ discovered s ]] =⇒

s ′= s(| state := dfs-action dfs (state s) s e, stack := e#x#xs, wl := succs e#(w
− {e})#ws, discover := (discover s)(e 7→ counter s), counter := Suc (counter s)|)
=⇒ P

shows P
using inv
proof (cases s rule: dfs-step-cases)

case 3 then show ?thesis using empty [OF 3 ] inv
using dfs-step-simps(2 )
by fastforce

next
case (4 x xs w ws) with inv dfs-step-simps(3 )[of s x xs dfs]
obtain e where e:

e ∈ w
if e ∈ dfs-restrict dfs then stack s ′ = x#xs ∧ wl s ′ = (hd (wl s) − {e})#tl (wl

s) ∧ discover s ′ = discover s ∧ counter s ′ = counter s ∧ state s ′ = state s ∧ start
s ′ = start s ∧ finish s ′ = finish s

else if e ∈ discovered s
then stack s ′ = x#xs ∧ wl s ′ = (hd (wl s) − {e})#tl (wl s) ∧ discover s ′

= discover s ∧ counter s ′ = counter s ∧ state s ′ = dfs-remove dfs (state s) s e ∧
start s ′ = start s ∧ finish s ′ = finish s

else stack s ′ = e#x#xs ∧ wl s ′ = succs e#(hd (wl s) − {e})#tl (wl s) ∧
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discover s ′ = (discover s)(e 7→ counter s) ∧ counter s ′ = Suc (counter s) ∧ state
s ′ = dfs-action dfs (state s) s e ∧ start s ′ = start s ∧ finish s ′ = finish s

by (simp add : dfs-sws.defs) force

show ?thesis
proof (cases e ∈ dfs-restrict dfs)

case True with 4 e restrict [OF 4 e(1 )] show ?thesis by simp
next

case False with 4 e remove[OF 4 e(1 )] visit [OF 4 e(1 )] show ?thesis by
(cases e ∈ discovered s) simp-all

qed
qed simp-all

lemma stack-wl-remove-induct [case-names 0 greater , consumes 5 ]:
assumes stack s = x#xs and wl s = w#ws
and stack s ′ = x#xs and wl s ′ = (w − {e})#ws
and inv : ∀ n < length (stack s). P (stack s ! n) (wl s ! n) (discover s) (finish

s) (start s)
and case-0 : P x w (discover s) (finish s) (start s) =⇒ P x (w − {e}) (discover

s ′) (finish s ′) (start s ′)
and step:

∧
n. [[ n < length (stack s); n > 0 ; P (stack s ! n) (wl s ! n) (discover

s) (finish s) (start s) ]] =⇒ P (stack s ! n) (wl s ! n) (discover s ′) (finish s ′) (start
s ′)

shows ∀n < length (stack s ′). P (stack s ′ ! n) (wl s ′ ! n) (discover s ′) (finish
s ′) (start s ′)
proof (rule allI , rule impI )

fix n
assume lt ′: n < length (stack s ′) with assms have lt : n < length (stack s) by

simp
show P (stack s ′ ! n) (wl s ′ ! n)(discover s ′) (finish s ′) (start s ′)
proof (cases n)

case 0 with assms lt ′ show ?thesis by auto
next

case (Suc m) with lt step[of n] inv have P (stack s ! n) (wl s ! n) (discover
s ′) (finish s ′) (start s ′) by simp

with Suc assms(1−4 ) show ?thesis by auto
qed

qed

lemma stack-wl-visit-induct [case-names case-0 case-1 greater , consumes 5 ]:
assumes stack s = x#xs and wl s = w#ws
and stack s ′ = e#x#xs and wl s ′ = succs e#(w − {e})#ws
and inv : ∀ n < length (stack s). P (stack s ! n) (wl s ! n) (discover s) (finish

s) (start s)
and case-0 : P e (succs e) (discover s ′) (finish s ′) (start s ′)
and case-1 : P x w (discover s) (finish s) (start s) =⇒ P x (w − {e}) (discover

s ′) (finish s ′) (start s ′)
and step:

∧
n. [[ n < length (stack s); n > 0 ; P (stack s ! n) (wl s ! n) (discover
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s) (finish s) (start s) ]] =⇒ P (stack s ! n) (wl s ! n) (discover s ′) (finish s ′) (start
s ′)

shows ∀n < length (stack s ′). P (stack s ′ ! n) (wl s ′ ! n) (discover s ′) (finish
s ′) (start s ′)
proof (rule allI , rule impI )

fix n
assume lt ′: n < length (stack s ′) hence lt : n < Suc (length (stack s)) using

assms(1 ,3 ) by simp

show P (stack s ′ ! n) (wl s ′ ! n) (discover s ′) (finish s ′) (start s ′)
proof (cases n)

case 0 with assms lt ′ show ?thesis by simp
next

case (Suc m) note suc-m = this
show ?thesis
proof (cases m)

case 0 with suc-m assms show ?thesis by auto
next

case (Suc m ′) with suc-m lt have m < length (stack s) and m > 0 by
simp-all

with step[of m] inv have P (stack s ! m) (wl s ! m) (discover s ′) (finish s ′)
(start s ′) by simp

with suc-m assms(1−4 ) 〈m > 0 〉 show ?thesis by auto
qed

qed
qed

Basic lemmata over dfs-step wrt to properties of the DFS

lemma dfs-step-preserves-start :
s ′ ∈ dfs-step dfs s =⇒ wl s 6= [] =⇒ start s ′ = start s

by (cases rule: dfs-step-cases-elem) (auto simp add : dfs-sws.defs)

lemma dfs-step-discovered-subset :
s ′ ∈ dfs-step dfs s =⇒ wl s 6= [] =⇒ discovered s ′ ⊇ discovered s

by (cases rule: dfs-step-cases-elem) force+

lemma dfs-step-exists:
assumes inv : stack s 6= [] wl s 6= []
shows dfs-step dfs s 6= {}

using inv
proof (cases stack s)

case (Cons x xs) then show ?thesis
proof (cases hd(wl s) = {})

case True with dfs-step-simps(2 )[OF Cons inv(2 )] show ?thesis by blast
next

case False then obtain e where e ∈ hd (wl s) by blast
thus ?thesis

using dfs-step-simps(3 )[OF Cons inv(2 ) 〈hd(wl s) 6= {}〉, of dfs]
apply simp
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apply (rule ex-comm[THEN iffD1 ]) — commute the two ex.-quant. variables
in the conclusion

apply (rule-tac x=e in exI ) — instantiate the first one
apply (cases e ∈ dfs-restrict dfs, simp)
by (cases e ∈ discovered s) simp-all

qed
qed simp

lemma dfs-step-stack-not-discovered :
assumes s ′ ∈ dfs-step dfs s wl s 6= []
and length (stack s ′) > length (stack s)
shows hd (stack s ′) /∈ discovered s

using assms
by cases auto

lemma dfs-step-stack-not-restricted :
assumes s ′ ∈ dfs-step dfs s wl s 6= []
and length (stack s ′) > length (stack s)
shows hd (stack s ′) /∈ dfs-restrict dfs

using assms
by cases auto

dfs-cond-compl specifies the condition that must hold to continue searching.
It consists of the conditions needed by the framework and the ones given by
dfs-cond dfs, that are dependent on the concrete implementation.

definition dfs-cond-compl :: ( ′S , ′n, ′X ) dfs-algorithm-scheme ⇒ ( ′S , ′n) dfs-sws
⇒ bool
where

dfs-cond-compl dfs s ≡ stack s 6= [] ∧ wl s 6= [] ∧ dfs-cond dfs (state s)

lemma dfs-cond-compl-cond [dest ]:
dfs-cond-compl dfs s =⇒ dfs-cond dfs (state s)

unfolding dfs-cond-compl-def
by auto

lemma dfs-cond-compl-step-exists [dest ]:
dfs-cond-compl dfs s =⇒ dfs-step dfs s 6= {}

unfolding dfs-cond-compl-def
by (simp add : dfs-step-exists)

dfs-next includes the above condition, s.t. it is only possible to make a step,
if the condition is met.

definition dfs-next :: ( ′S , ′n, ′X ) dfs-algorithm-scheme ⇒ ( ′S , ′n) dfs-sws ⇒ ( ′S ,
′n) dfs-sws ⇒ bool
where

dfs-next dfs s s ′←→
dfs-cond-compl dfs s ∧ s ′ ∈ dfs-step dfs s

lemma dfs-nextE :
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[[ dfs-next dfs s s ′; [[dfs-cond-compl dfs s; s ′ ∈ dfs-step dfs s]] =⇒ P ]] =⇒ P
unfolding dfs-next-def
by blast

lemma dfs-next-dfs-step[dest ]:
dfs-next dfs s s ′ =⇒ s ′ ∈ dfs-step dfs s

unfolding dfs-next-def
by simp

lemma dfs-next-stack-notempty [simp, intro]:
dfs-next dfs s s ′ =⇒ stack s 6= []

unfolding dfs-next-def dfs-cond-compl-def
by simp-all

lemma dfs-next-wl-notempty [simp, intro]:
dfs-next dfs s s ′ =⇒ wl s 6= []

unfolding dfs-next-def dfs-cond-compl-def
by simp-all

lemma lift-to-dfs-next :
assumes s ′ ∈ dfs-step dfs s =⇒ wl s 6= [] =⇒ PROP S
shows dfs-next dfs s s ′ =⇒ PROP S

using assms
by (simp add : dfs-next-dfs-step)

lemmas dfs-next-cases-elem [case-names empty restrict remove visit , cases pred :
dfs-next ] = dfs-step-cases-elem[COMP lift-to-dfs-next ]

lemma dfs-nextI :
dfs-cond-compl dfs s =⇒ s ′ ∈ dfs-step dfs s =⇒ dfs-next dfs s s ′

unfolding dfs-next-def
by auto

lemma dfs-next-cond-compl :
dfs-next dfs s s ′ =⇒ dfs-cond-compl dfs s

unfolding dfs-next-def
by auto

lemmas dfs-next-intros = dfs-step-intros[THEN dfs-nextI [rotated ], rotated −1 ]

end

1.2 Properties of the DFS

Using some notion of a good state via the predicate dfs-constructable, we
enable the tool of induction over DFS. This is very useful for showing that
certain (basic) properties hold throughout the search.

context finite-digraph
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begin

To be able to define good states, we have to define a basic state, i.e. the
state to start with for every possible DFS. Then dfs-constructable is just the
set of states, that can be constructed from this point with the given graph.

definition dfs-constr-start :: ( ′S , ′n, ′X ) dfs-algorithm-scheme ⇒ ′n ⇒ ( ′S , ′n)
dfs-sws
where dfs-constr-start dfs x ≡ (| start = x , stack = [x ], wl = [succs x ], discover
= [x 7→ 0 ], finish = Map.empty , counter = 1 , state = dfs-start dfs x |)

lemma dfs-constr-start-simps[simp]:
start (dfs-constr-start dfs x ) = x
stack (dfs-constr-start dfs x ) = [x ]
wl (dfs-constr-start dfs x ) = [succs x ]
discovered (dfs-constr-start dfs x ) = {x}
ran (discover (dfs-constr-start dfs x )) = {0}
finished (dfs-constr-start dfs x ) = {}
ran (finish (dfs-constr-start dfs x )) = {}
counter (dfs-constr-start dfs x ) = 1
state (dfs-constr-start dfs x ) = dfs-start dfs x

by (simp-all add : dfs-constr-start-def )

inductive dfs-constructable :: ( ′S , ′n, ′X ) dfs-algorithm-scheme ⇒ ( ′S , ′n) dfs-sws
⇒ bool

for dfs :: ( ′S , ′n, ′X ) dfs-algorithm-scheme where
start :

∧
x . x ∈ V =⇒ x /∈ dfs-restrict dfs =⇒ dfs-constructable dfs (dfs-constr-start

dfs x )
| step: dfs-next dfs s s ′ =⇒ dfs-constructable dfs s =⇒ dfs-constructable dfs s ′

lemma dfs-constructable-induct [case-names start empty restrict remove visit , in-
duct pred : dfs-constructable]:

assumes inv : dfs-constructable dfs s
and start ′:

∧
x . x ∈ V =⇒ x /∈ dfs-restrict dfs =⇒ P (dfs-constr-start dfs x )

and empty ′:
∧

s s ′ x xs w ws. [[ dfs-next dfs s s ′; dfs-constructable dfs s; dfs-constructable
dfs s ′; P s; stack s = x#xs; wl s = w#ws; w = {};

s ′ = s(|stack := xs, wl := ws, finish := (finish s)(x 7→ counter s),
counter := Suc (counter s), state := dfs-post dfs (state s) s x |)]]

=⇒ P s ′

and restrict ′:
∧

s s ′ e x xs w ws. [[ dfs-next dfs s s ′; dfs-constructable dfs s;
dfs-constructable dfs s ′; P s; stack s = x#xs; wl s = w#ws; w 6= {};

e ∈ w ; e ∈ dfs-restrict dfs; s ′ = s(| wl := (w − {e})#ws|) ]]
=⇒ P s ′

and remove ′:
∧

s s ′ e x xs w ws. [[ dfs-next dfs s s ′; dfs-constructable dfs s;
dfs-constructable dfs s ′; P s; stack s = x#xs; wl s = w#ws; w 6= {};

e ∈ w ; e /∈ dfs-restrict dfs; e ∈ discovered s; s ′ = s(| wl := (w −
{e})#ws, state := dfs-remove dfs (state s) s e|) ]]

=⇒ P s ′

and visit ′:
∧

s s ′ e x xs w ws. [[ dfs-next dfs s s ′; dfs-constructable dfs s; dfs-constructable
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dfs s ′; P s; stack s = x#xs; wl s = w#ws; w 6= {};
e ∈ w ; e /∈ dfs-restrict dfs; e /∈ discovered s;
s ′ = s(| state := dfs-action dfs (state s) s e, stack := e#x#xs, wl :=

succs e#(w − {e})#ws, discover := (discover s)(e 7→ counter s), counter := Suc
(counter s)|) ]]

=⇒ P s ′

shows P s
using inv

proof (induct rule: dfs-constructable.induct)
case start with start ′ show ?case by metis

next
case (step s s ′) then show ?case by (cases rule: dfs-next-cases-elem) (metis

dfs-constructable.step step empty ′ restrict ′ remove ′ visit ′)+
qed

Formulate the constructable predicate with an explicit starting point.

inductive-set dfs-constr-from :: ( ′S , ′n, ′X ) dfs-algorithm-scheme ⇒ ′n ⇒ ( ′S , ′n)
dfs-sws set
for dfs :: ( ′S , ′n, ′X ) dfs-algorithm-scheme
and x :: ′n
where
start [simp]: x ∈ V =⇒ x /∈ dfs-restrict dfs =⇒ dfs-constr-start dfs x ∈ dfs-constr-from

dfs x
| step: s ∈ dfs-constr-from dfs x =⇒ dfs-next dfs s s ′ =⇒ s ′ ∈ dfs-constr-from dfs
x

lemma dfs-constr-from-rtranclp-dfs-next :
assumes x ∈ V x /∈ dfs-restrict dfs
shows s ∈ dfs-constr-from dfs x ←→ (dfs-next dfs)∗∗ (dfs-constr-start dfs x ) s

proof
assume s ∈ dfs-constr-from dfs x thus (dfs-next dfs)∗∗ (dfs-constr-start dfs x ) s

by induction (simp-all add : assms)
next

assume (dfs-next dfs)∗∗ (dfs-constr-start dfs x ) s thus s ∈ dfs-constr-from dfs x
by induction (simp-all add : dfs-constr-from.step assms)
qed

lemma dfs-constr-from-constructable[dest ]:
s ∈ dfs-constr-from dfs x =⇒ dfs-constructable dfs s

by (induction rule: dfs-constr-from.induct) (simp-all add : dfs-constructable.start
dfs-constructable.step)

lemma dfs-constructable-constr-from-start :
dfs-constructable dfs s =⇒ s ∈ dfs-constr-from dfs (start s)

by (induction rule: dfs-constructable.induct) (simp, metis dfs-constr-from.step dfs-step-preserves-start [COMP
lift-to-dfs-next ])

lemma constr-from-implies-start :
s ∈ dfs-constr-from dfs x =⇒ start s = x
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by (induction rule: dfs-constr-from.induct) (simp-all add : dfs-step-preserves-start [COMP
lift-to-dfs-next ])

lemma counter-larger-one:
dfs-constructable dfs s =⇒ counter s ≥ 1

by (induct rule: dfs-constructable-induct) auto

lemma length-wl-eq-stack :
dfs-constructable dfs s =⇒ length (wl s) = length (stack s)

by (induction rule: dfs-constructable-induct) auto

lemma succs-discovered-subset-wl-all :
dfs-constructable dfs s =⇒ ∀n < length (stack s). succs (stack s ! n) − discovered

s − dfs-restrict dfs ⊆ wl s ! n
proof (induction rule: dfs-constructable-induct)
case (empty s s ′) hence length (stack s) = length (wl s) by (auto dest : length-wl-eq-stack)
with list-take-induct-tl2 [OF this(1 )] empty .IH empty show ?case by simp

next
case (remove s s ′ e x xs w ws)

then have w ′: wl s ′ = (w − {e}) # ws and s ′: stack s ′ = x#xs and d ′:
discovered s ′ = discovered s by auto

from remove(4 ,5 ) s ′ w ′ remove.IH show ?case
by (rule stack-wl-remove-induct) (simp-all add : d ′, blast intro!: remove(9 ))

next
case (restrict s s ′ e x xs w ws)

then have w ′: wl s ′ = (w − {e}) # ws and s ′: stack s ′ = x#xs and d ′:
discovered s ′ = discovered s by auto

from restrict(4 ,5 ) s ′ w ′ restrict .IH show ?case
by (rule stack-wl-remove-induct) (simp-all add : d ′, blast intro!: restrict(8 ))

next
case (visit s s ′ e x xs w ws) hence s ′: stack s ′ = e#x#xs and w ′: wl s ′ = succs

e#(w − {e})#ws and d ′: discovered s ′ = insert e (discovered s) by simp-all
from visit(4 ,5 ) s ′ w ′ visit .IH show ?case

by (rule stack-wl-visit-induct) (auto simp add : d ′)
qed auto

lemma succs-discovered-subset-wl :
dfs-constructable dfs s =⇒ n < length (stack s) =⇒ succs (stack s ! n) − discov-

ered s − dfs-restrict dfs ⊆ wl s ! n
by (metis succs-discovered-subset-wl-all)

lemma empty-wl-succs-discovered :
dfs-constructable dfs s =⇒ n < length (stack s) =⇒ wl s ! n = {} =⇒ succs

(stack s ! n) − dfs-restrict dfs ⊆ discovered s
using succs-discovered-subset-wl
by blast
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lemma wl-subset-succs-all :
dfs-constructable dfs s =⇒ ∀n < length (stack s). wl s ! n ⊆ succs (stack s ! n)

proof (induction rule: dfs-constructable-induct)
case (empty s s ′) hence length (wl s) = length (stack s) by (auto dest : length-wl-eq-stack)
with list-take-induct-tl2 [OF this(1 )] empty .IH empty show ?case by simp

next
case (remove s s ′ e x xs w ws) hence w ′: wl s ′ = (w − {e}) # ws and s ′: stack

s ′ = x#xs by simp-all
from remove(4 ,5 ) s ′ w ′ remove.IH show ?case by (rule stack-wl-remove-induct)

auto
next

case (restrict s s ′ e x xs w ws) hence w ′: wl s ′ = (w − {e}) # ws and s ′: stack
s ′ = x#xs by simp-all
from restrict(4 ,5 ) s ′ w ′ restrict .IH show ?case by (rule stack-wl-remove-induct)

auto
next

case (visit s s ′ e x xs w ws) hence e: stack s ′ = e#x#xs wl s ′ = succs e#(w −
{e})#ws by simp-all

from visit(4 ,5 ) e visit .IH show ?case by (rule stack-wl-visit-induct) auto
qed simp

lemma wl-subset-succs:
dfs-constructable dfs s =⇒ n < length (stack s) =⇒ wl s ! n ⊆ succs (stack s !

n)
by (metis wl-subset-succs-all)

lemma wl-subset-verts:
dfs-constructable dfs s =⇒ x ∈ set (wl s) =⇒ x ⊆ V

proof −
assume c: dfs-constructable dfs s and x ∈ set (wl s)
hence ∃ n. x = wl s ! n ∧ n < length (wl s) using in-set-conv-nth[of x wl s]

by blast
then obtain n where x = wl s ! n n < length (wl s) by force
with length-wl-eq-stack [OF c] wl-subset-succs[OF c] have x ⊆ succs (stack s !

n) by simp
with succs-in-V show ?thesis by auto

qed

lemma wl-finite:
dfs-constructable dfs s =⇒ x ∈ set (wl s) =⇒ finite x

by (metis wl-subset-verts finite-V finite-subset)

lemma discovered-subset-verts:
dfs-constructable dfs s =⇒ discovered s ⊆ V

proof (induct s rule: dfs-constructable-induct)
case (visit s s ′ e - - w) hence discovered s ′ = insert e (discovered s) by simp
moreover
from visit wl-subset-verts[OF visit(2 )] have w ⊆ V by simp
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with visit have e ∈ V by auto
ultimately show ?case using 〈discovered s ⊆ V 〉 by auto

qed simp+

lemma discovered-finite:
dfs-constructable dfs s =⇒ finite (discovered s)

by (metis finite-V finite-subset discovered-subset-verts)

lemma ran-discover-finite:
dfs-constructable dfs s =⇒ finite (ran (discover s))

by (metis discovered-finite map-dom-ran-finite)

lemma stack-subset-discovered :
dfs-constructable dfs s =⇒ set (stack s) ⊆ discovered s

by (induct rule: dfs-constructable-induct) auto

lemma stack-subset-verts:
dfs-constructable dfs s =⇒ set (stack s) ⊆ V

by (metis discovered-subset-verts stack-subset-discovered subset-trans)

lemma stack-distinct :
dfs-constructable dfs s =⇒ distinct (stack s)

proof (induct rule: dfs-constructable-induct)
case (visit s s ′ - x xs)
hence tl : stack s = tl (stack s ′) by simp

{
assume hd (stack s ′) /∈ set (stack s)
with tl have hd (stack s ′) /∈ set (tl (stack s ′)) by simp

moreover
from tl 〈distinct (stack s)〉 have distinct (tl (stack s ′)) by simp

ultimately have distinct (stack s ′) by (cases stack s ′) simp-all
}

moreover
from visit have hd (stack s ′) /∈ discovered s using dfs-step-stack-not-discovered [OF

dfs-next-dfs-step] by simp

moreover
from visit stack-subset-discovered have set (stack s) ⊆ discovered s by blast
ultimately show ?case by auto

qed simp+

lemma last-stack-is-start :
dfs-constructable dfs s =⇒ stack s 6= [] =⇒ last (stack s) = start s

by (induct rule: dfs-constructable-induct) (auto simp add : dfs-constr-start-def tl-last)
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lemma start-discovered :
dfs-constructable dfs s =⇒ start s ∈ discovered s

proof (induct rule: dfs-constructable.induct)
case step thus ?case by (metis set-rev-mp dfs-step-discovered-subset dfs-next-dfs-step

dfs-step-preserves-start dfs-next-wl-notempty)
qed simp

lemma start-not-restr :
dfs-constructable dfs s =⇒ start s /∈ dfs-restrict dfs

by (induction rule: dfs-constructable-induct) simp-all

lemma dfs-start-in-verts:
dfs-constructable dfs s =⇒ start s ∈ V

by (metis start-discovered discovered-subset-verts set-rev-mp)

lemma finished-stack-eq-discovered :
dfs-constructable dfs s =⇒ finished s ∪ set (stack s) = discovered s

proof (induction rule: dfs-constructable-induct)
case (empty s s ′ x xs)
hence set (stack s) = set (stack s ′) ∪ {hd (stack s)} by (fastforce intro:

list .exhaust)
with empty have finished s ′ ∪ set (stack s ′) = finished s ∪ set (stack s) by auto
also note empty .IH
also from empty have discovered s = discovered s ′ by simp
finally show ?case .

next
case (visit s s ′ e x xs) then have fin-eq : finished s ′ = finished s by simp

from visit have dis-eq : discovered s ′ = insert e (discovered s) and stack s ′ = e
# stack s by simp-all

then have set (stack s ′) = insert e (set (stack s)) by auto
hence finished s ′ ∪ set (stack s ′) = insert e ((finished s ′) ∪ set (stack s)) by

auto
also with fin-eq have ... = insert e (finished s ∪ set (stack s)) by simp
also with visit .IH have ... = insert e (discovered s) by simp
also with dis-eq have ... = discovered s ′ by simp
finally show ?case .

qed simp+

lemma finished-subset-discovered :
dfs-constructable dfs s =⇒ finished s ⊆ discovered s

by (auto dest !: finished-stack-eq-discovered)

lemma finished-subset-verts:
dfs-constructable dfs s =⇒ finished s ⊆ V

by (metis finished-subset-discovered discovered-subset-verts subset-trans)

lemma finished-finite:
dfs-constructable dfs s =⇒ finite (finished s)
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by (metis finished-subset-verts finite-V finite-subset)

lemma ran-finish-finite:
dfs-constructable dfs s =⇒ finite (ran (finish s))

by (metis map-dom-ran-finite finished-finite)

lemma finished-implies-discovered :
dfs-constructable dfs s =⇒ v ∈ finished s =⇒ v ∈ discovered s

by (auto dest !: finished-subset-discovered)

lemma not-discovered-implies-not-finished :
dfs-constructable dfs s =⇒ v /∈ discovered s =⇒ v /∈ finished s

by (metis finished-implies-discovered)

lemma discovered-non-stack-implies-finished :
dfs-constructable dfs s =⇒ v ∈ discovered s =⇒ v /∈ set (stack s) =⇒ v ∈ finished

s
by (auto dest !: finished-stack-eq-discovered)

lemma discovered-not-finished-implies-stack :
dfs-constructable dfs s =⇒ v ∈ discovered s =⇒ v /∈ finished s =⇒ v ∈ set (stack

s)
by (metis discovered-non-stack-implies-finished)

lemma discovered-not-restricted :
dfs-constructable dfs s =⇒ v ∈ discovered s =⇒ v /∈ dfs-restrict dfs

by (induction rule: dfs-constructable-induct) auto

lemma finished-not-restricted :
dfs-constructable dfs s =⇒ v ∈ finished s =⇒ v /∈ dfs-restrict dfs

using discovered-not-restricted finished-subset-discovered
by blast

lemma stack-not-restricted :
dfs-constructable dfs s =⇒ v ∈ set (stack s) =⇒ v /∈ dfs-restrict dfs

using discovered-not-restricted stack-subset-discovered
by blast

lemma restricted-not-finished :
dfs-constructable dfs s =⇒ v ∈ dfs-restrict dfs =⇒ v /∈ finished s

using finished-not-restricted by blast

lemma restricted-not-discovered :
dfs-constructable dfs s =⇒ v ∈ dfs-restrict dfs =⇒ v /∈ discovered s

using discovered-not-restricted by blast

lemma restricted-not-stack :
dfs-constructable dfs s =⇒ v ∈ dfs-restrict dfs =⇒ v /∈ set (stack s)

using stack-not-restricted by blast
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lemma stack-implies-not-finished :
dfs-constructable dfs s =⇒ v ∈ set (stack s) =⇒ v /∈ finished s

proof (induction rule: dfs-constructable-induct)
case (empty - - x ) with stack-distinct [OF empty(2 )] show ?case by (cases v =

x ) auto
next

case (visit s s ′ e) then have f-eq : finish s = finish s ′ and e-stack : stack s ′ = e
# stack s by simp-all

with visit(9 ) not-discovered-implies-not-finished [OF visit(2 )] have e /∈ finished
s by simp

with e-stack visit .IH visit(12 ) f-eq show ?case by auto
qed simp+

lemma finished-implies-not-stack :
dfs-constructable dfs s =⇒ x ∈ finished s =⇒ x /∈ set (stack s)

by (metis stack-implies-not-finished)

lemma stack-in-Suc-succs-restr-all :
dfs-constructable dfs s =⇒ ∀ n < (length (stack s)) − 1 . (stack s ! n) ∈ succs

(stack s ! Suc n) − dfs-restrict dfs
proof (induction rule: dfs-constructable-induct)

case (empty - - - xs) thus ?case by (induct xs) auto
next

case (visit s s ′ e - - w) hence stack s ′ = e#stack s by simp
with wl-subset-succs[OF visit(2 ), of 0 ] visit have stack s ′ ! 0 ∈ succs (stack

s ′ ! Suc 0 ) − dfs-restrict dfs using dfs-next-stack-notempty [OF visit(1 ), THEN
hd-conv-nth] by auto

moreover
from visit have

∧
n. n < (length (stack s ′)) − 1 =⇒ n > 0 =⇒ (stack s ′ ! n)

∈ succs (stack s ′ ! Suc n) − dfs-restrict dfs by fastforce

ultimately show ?case by blast
qed simp+

lemma stack-in-Suc-succs-restr :
dfs-constructable dfs s =⇒ n < length (stack s) − 1
=⇒ stack s ! n ∈ succs (stack s ! Suc n) − dfs-restrict dfs

by (metis stack-in-Suc-succs-restr-all)

lemma Suc-stack-stack-in-restr-edges:
dfs-constructable dfs s =⇒ n < length (stack s) − 1 =⇒ (stack s ! Suc n, stack

s ! n) ∈ (rel-restrict E (dfs-restrict dfs))
using succs-implies-edge rel-restrict-notR stack-in-Suc-succs-restr restricted-not-stack
by (smt Diff-iff nth-mem)

lemma Suc-stack-stack-in-edges:
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dfs-constructable dfs s =⇒ n < length (stack s) − 1 =⇒ (stack s ! Suc n, stack
s ! n) ∈ E
using Suc-stack-stack-in-restr-edges rel-restrict-lift
by metis

lemma Suc-reachable-stack :
dfs-constructable dfs s =⇒ n < (length (stack s)) − 1 =⇒ stack s ! Suc n

→\dfs-restrict dfs+ stack s ! n
using restr-reachable1-trancl Suc-stack-stack-in-restr-edges
by blast

lemma prev-reachable-stack :
dfs-constructable dfs s =⇒ n < length (stack s) =⇒ m < n =⇒ stack s ! n
→\dfs-restrict dfs+ stack s ! m
by (metis restr-reachable1-trancl nth-step-trancl Suc-stack-stack-in-restr-edges)

lemma tl-reachable-stack-hd :
assumes constr : dfs-constructable dfs s
and x ∈ set (tl (stack s))
shows x →\dfs-restrict dfs+ hd (stack s)

proof −
from assms have ne: stack s 6= [] by auto
from assms obtain n where n < length (tl (stack s)) tl (stack s) ! n = x

unfolding in-set-conv-nth by auto
with nth-tl [OF ne] have Suc n < length (stack s) stack s ! (Suc n) = x by

simp-all
moreover with prev-reachable-stack [OF constr , of Suc n 0 ] have stack s ! Suc

n →\dfs-restrict dfs+ stack s ! 0 by simp
ultimately show ?thesis using hd-conv-nth[OF ne] by simp

qed

lemma start-reachable-stack :
assumes constr : dfs-constructable dfs s
and x ∈ set (stack s)
shows start s →? x

proof (cases x = start s)
case True with self-reachable dfs-start-in-verts[OF constr ] show ?thesis by simp

next
case False with assms have stack s 6= [] by auto
with last-stack-is-start [OF constr ] last-conv-nth have s-nth: start s = stack s !

(length (stack s) − 1 ) by metis

from 〈x ∈ set (stack s)〉 obtain n where n: n < length (stack s) stack s ! n =
x unfolding in-set-conv-nth by auto

have n < length (stack s) − 1
proof (rule ccontr)

assume ¬ n < length (stack s) − 1
with n have n = length (stack s) − 1 by auto
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with s-nth n False show False by simp
qed
with prev-reachable-stack [OF constr ] have stack s ! (length (stack s) − 1 )

→\dfs-restrict dfs+ stack s ! n by auto
with s-nth n have start s →\dfs-restrict dfs+ x by auto
thus ?thesis by blast

qed

lemma ran-discover-lt-counter :
dfs-constructable dfs s =⇒ v ∈ ran (discover s) =⇒ v < counter s

proof (induction rule: dfs-constructable-induct)
case (visit s s ′ e) hence

d ′: discover s ′ = (discover s)(e 7→ counter s)
and c ′: counter s ′ = Suc (counter s)

by simp-all
with visit(9 ) have r ′: ran (discover s ′) = ran (discover s) ∪ {counter s} by

auto

from c ′ show ?case
proof (cases v = counter s)

case False with visit .prems r ′ have v ∈ ran (discover s) by simp
with visit .IH c ′ show ?thesis by simp

qed simp
qed auto

lemma discover-lt-counter :
assumes constr : dfs-constructable dfs s
and nn: v ∈ discovered s
shows δ s v < counter s

proof −
from nn have δ s v ∈ ran (discover s) by (auto intro: ranI )
with ran-discover-lt-counter [OF constr ] show ?thesis .

qed

lemma ran-finish-lt-counter :
dfs-constructable dfs s =⇒ v ∈ ran (finish s) =⇒ v < counter s

proof (induction rule: dfs-constructable-induct)
case (empty s s ′ x xs)
hence f ′: finish s ′ = (finish s)(x 7→ counter s)

and c ′: counter s ′ = Suc (counter s)
by simp-all

with stack-implies-not-finished [OF empty(2 )] empty(4 ) have x /∈ finished s by
simp

with f ′ have r ′: ran (finish s ′) = ran (finish s) ∪ {counter s} by auto

from c ′ show ?case
proof (cases v = counter s)

case False with empty .prems r ′ have v ∈ ran (finish s) by simp
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with f ′ c ′ empty .IH show ?thesis by simp
qed simp

qed auto

lemma finish-lt-counter :
assumes constr : dfs-constructable dfs s
and nn: v ∈ finished s
shows ϕ s v < counter s

proof −
from nn have ϕ s v ∈ ran (finish s) by (auto intro: ranI )
with ran-finish-lt-counter [OF constr ] show ?thesis .

qed

lemma finish-gt-discover :
dfs-constructable dfs s =⇒ v ∈ finished s =⇒ ϕ s v > δ s v

proof (induction rule: dfs-constructable-induct)
case (empty s s ′ x xs)
hence f ′: finish s ′ = (finish s)(x 7→ counter s)

and d ′: discover s = discover s ′

and c ′: counter s ′ = Suc (counter s)
by simp-all

show ?case
proof (cases v = x )

case False with empty .prems f ′ have v ∈ finished s ϕ s v = ϕ s ′ v by auto
with d ′ empty .IH show ?thesis by auto

next
case True with f ′ have v ∈ finished s ′ by simp
with finished-implies-discovered [OF empty(3 )] d ′ have v ∈ discovered s by

simp
with discover-lt-counter [OF empty(2 )] d ′ have δ s ′ v < counter s by simp
with f ′ c ′ True show ?thesis by simp

qed
next

case (visit s s ′ e)
hence d ′: discover s ′ = (discover s)(e 7→ counter s)

and f ′: finish s = finish s ′

by simp-all

show ?case
proof (cases v = e)

case False with d ′ f ′ visit show ?thesis by force
next
case True with f ′ have v /∈ finished s ′ using not-discovered-implies-not-finished [OF

visit(2 ) visit(9 )] by simp
with visit .prems show ?thesis by contradiction

qed
qed simp+
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lemma discover-finish-distinct :
dfs-constructable dfs s =⇒ ran (finish s) ∩ ran (discover s) = {}

proof (induction rule: dfs-constructable-induct)
case (empty s s ′ x xs) then have x /∈ finished s using stack-implies-not-finished [OF

empty(2 )] hd-in-set by simp
with empty have ran (finish s ′) = insert (counter s) (ran (finish s)) ran (discover

s ′) = ran (discover s)
by auto

moreover
with ran-discover-lt-counter [OF empty(2 )] have counter s /∈ ran (discover s ′)

by auto
ultimately show ?case using empty .IH by auto

next
case (visit s s ′ e) hence d ′: discover s ′ = discover s (e 7→ counter s) by simp
with visit(9 ) have ran (discover s ′) = insert (counter s) (ran (discover s)) by

auto

moreover
from visit have finish s = finish s ′ by simp

moreover
with ran-finish-lt-counter [OF visit(2 )] have counter s /∈ ran (finish s ′) by auto

ultimately show ?case using visit .IH by auto
qed simp+

lemma discover-neq-finish:
assumes constr : dfs-constructable dfs s
and verts: v ∈ V w ∈ V
and discovered : v ∈ discovered s
shows discover s v 6= finish s w

using discovered
proof (cases finish s w)
case (Some x ) then have x /∈ ran (discover s) using discover-finish-distinct [OF

constr ] by (auto intro: ranI )
with Some discovered show ?thesis by (metis ranI )

qed auto

lemma discover-card-ran-dom:
dfs-constructable dfs s =⇒ card (ran (discover s)) = card (dom (discover s))

proof (induction rule: dfs-constructable-induct)
case (visit s s ′) with discovered-finite[OF visit(2 )] visit(9 ) have card (dom

(discover s ′)) = card (dom (discover s)) + 1 by simp

moreover
from visit ran-discover-lt-counter [OF visit(2 )] have ran (discover s ′) = insert

(counter s) (ran (discover s)) counter s /∈ ran (discover s) by auto
with ran-discover-finite[OF visit(2 )] have card (ran (discover s ′)) = card (ran

(discover s)) + 1 by simp
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ultimately show ?case using visit .IH by simp
qed simp+

lemma discover-neq-discover :
assumes constr : dfs-constructable dfs s
and verts: v ∈ V w ∈ V
and ne: v 6= w
and discovered : v ∈ discovered s
shows discover s v 6= discover s w

proof −
from map-card-eq-iff [OF discovered-finite, OF constr ] assms discover-card-ran-dom[OF

constr ] have discover s v = discover s w ←→ v = w by auto
with ne show ?thesis by simp

qed

lemma finish-card-ran-dom:
dfs-constructable dfs s =⇒ card (ran (finish s)) = card (dom (finish s))

proof (induction rule: dfs-constructable-induct)
case (empty s s ′ x ) then have f ′: finish s ′ = finish s (x 7→ counter s) by simp
with empty have ∗: x /∈ finished s using stack-implies-not-finished by fastforce
with finished-finite[OF empty(2 )] f ′ have card (dom (finish s ′)) = card (dom

(finish s)) + 1 by simp

moreover
from f ′ ran-finish-lt-counter [OF empty(2 )] ∗ have ran (finish s ′) = insert

(counter s) (ran (finish s)) counter s /∈ ran (finish s) by auto
with ran-finish-finite[OF empty(2 )] have card (ran (finish s ′)) = card (ran

(finish s)) + 1 by simp

ultimately show ?case using empty .IH by simp
qed simp+

lemma finish-neq-finish:
assumes constr : dfs-constructable dfs s
and verts: v ∈ V w ∈ V
and ne: v 6= w
and discovered : v ∈ finished s
shows finish s v 6= finish s w

proof −
from map-card-eq-iff [OF finished-finite, OF constr ] assms finish-card-ran-dom[OF

constr ] have finish s v = finish s w ←→ v = w by auto
with ne show ?thesis by simp

qed

lemma prev-stack-discover-all :
dfs-constructable dfs s =⇒ ∀ n < length (stack s). ∀ v ∈ set (drop (Suc n) (stack

s)). δ s (stack s ! n) > δ s v
proof (induction rule: dfs-constructable-induct)
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case (visit s s ′ e)
hence d ′: discover s ′ = (discover s)(e 7→ counter s)

and s ′: stack s ′ = e # stack s
by simp-all

with stack-distinct [OF visit(3 )] have t-ni : e /∈ set(stack s) by simp

from visit(2 ) have
∧

v . v ∈ set (stack s) =⇒ δ s v < counter s by (metis
discover-lt-counter set-mp stack-subset-discovered)

with t-ni d ′ have
∧

v . v ∈ set (stack s) =⇒ δ s ′ v < δ s ′ e by auto
with s ′ have

∧
v . v ∈ set (drop (Suc 0 ) (stack s ′)) =⇒ δ s ′ v < δ s ′ (stack s ′ !

0 ) by auto

moreover
from s ′ d ′ t-ni have

∧
n. n < (length (stack s ′)) =⇒ n > 0 =⇒ δ s ′ (stack s ′

! n) = δ s (stack s ′ ! n) by auto
with visit .IH s ′ d ′ t-ni have

∧
n. n < (length (stack s ′)) − 1 =⇒ n > 0 =⇒

∀ v ∈ set (drop (Suc n) (stack s ′)). δ s ′ (stack s ′ ! n) > δ s ′ v by (smt drop-Cons ′

fun-upd-other in-set-dropD length-drop nth-Cons-pos)

ultimately show ?case by (smt length-drop length-pos-if-in-set)
qed auto

lemma prev-stack-discover :
dfs-constructable dfs s =⇒ n < length (stack s) =⇒ v ∈ set (drop (Suc n) (stack

s)) =⇒ δ s (stack s ! n) > δ s v
by (metis prev-stack-discover-all)

lemma Suc-stack-discover :
assumes constr : dfs-constructable dfs s
and n: n < (length (stack s)) − 1
shows δ s (stack s ! n) > δ s (stack s ! Suc n)

proof −
from prev-stack-discover assms have

∧
v . v ∈ set (drop (Suc n) (stack s)) =⇒

δ s (stack s ! n) > δ s v by fastforce
moreover from n have stack s ! Suc n ∈ set (drop (Suc n) (stack s)) using

in-set-conv-nth by fastforce
ultimately show ?thesis .

qed

lemma tl-lt-stack-hd-discover :
assumes dfs-constructable dfs s
and notempty : stack s 6= []
and x ∈ set (tl (stack s))
shows δ s x < δ s (hd (stack s))

proof −
from notempty obtain y ys where stack s = y#ys by (metis list .exhaust)
with assms show ?thesis

using prev-stack-discover
by (cases ys) force+
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qed

lemma obtain-discovered-predecessor :
assumes dfs-constructable tdfs s
and v ∈ discovered s
and v 6= start s
obtains y where v ∈ succs y and y ∈ discovered s and δ s v > δ s y

using assms
proof induction

case (visit s s ′ e x xs w) hence ∗: discover s ′ = discover s (e 7→ counter s) start
s ′ = start s stack s ′ = e#x#xs by simp-all

show ?case
proof (cases v = e)

case True with visit have v ∈ w by simp
with visit wl-subset-succs[OF visit(2 ), of 0 ] have v ∈ succs x by auto
moreover from tl-lt-stack-hd-discover [OF visit(3 ), of x ] ∗ True have δ s ′ x

< δ s ′ v by simp
moreover from stack-subset-discovered [OF visit(3 )] ∗ have x ∈ discovered s ′

by auto
ultimately show ?thesis using visit .prems by simp

next
case False with visit ∗ have ∗∗: v ∈ discovered s v 6= start s by auto
{

fix y
assume A: v ∈ succs y y ∈ discovered s δ s y < δ s v
with visit(9 ) False ∗ have y ∈ discovered s ′ δ s ′ y < δ s ′ v by auto
with A visit .prems have thesis by simp

}
with visit .IH [OF - ∗∗] show ?thesis .

qed
qed simp-all

lemma stack-finish-discover :
dfs-constructable dfs s =⇒ v ∈ set (stack s) =⇒ w ∈ finished s =⇒ ϕ s w < δ s

v ∨ δ s v < δ s w
proof (induction rule: dfs-constructable-induct)

case (empty s s ′ x ) then have
d ′: discover s = discover s ′ and
f ′: finish s ′ = finish s (x 7→ counter s) and
v : v ∈ set (stack s)
by simp-all

show ?case
proof (cases w = x )

case True with empty have δ s w > δ s v using prev-stack-discover [OF
empty(2 )] by fastforce

with d ′ show ?thesis by simp
next
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case False with empty .prems empty .IH v f ′ d ′ show ?thesis by force
qed

next
case (visit s s ′ e)
hence d ′: discover s ′ = discover s (e 7→ counter s)

and s ′: stack s ′ = e # stack s
and f ′: finish s = finish s ′

by simp-all

show ?case
proof (cases v = e)

case True with d ′ have δ s ′ v = counter s by simp
moreover from visit .prems f ′ have ϕ s ′w < counter s using finish-lt-counter [OF

visit(2 )] by simp
ultimately show ?thesis by simp

next
case False with visit .prems s ′ d ′ have v ∈ set (stack s) and discover s v =

discover s ′ v by simp-all
with f ′ visit .prems visit .IH have ϕ s ′ w < δ s ′ v ∨ δ s ′ v < δ s w by force

moreover from visit .prems s ′ have w 6= e using finished-implies-not-stack [OF
visit(3 )] by simp

with d ′ have discover s w = discover s ′ w by simp
ultimately show ?thesis by simp

qed
qed simp+

lemma interval-inclusion:
assumes dfs-constructable dfs s
and v ∈ discovered s
and w ∈ finished s
and δ s v < δ s w
and v /∈ finished s ∨ δ s w < ϕ s v
shows v /∈ finished s ∨ ϕ s w < ϕ s v

using assms
proof induction

case (empty s s ′ x ) hence ne: v 6= w and f ′: finish s ′ = finish s (x 7→counter s)
by auto

show ?case
proof (cases v = x )

case True with f ′ ne empty .prems have w ∈ finished s and ϕ s ′ v = counter
s by auto

moreover with finish-lt-counter [OF empty(2 )] empty .prems have counter s
> ϕ s w by simp

with f ′ ne True have counter s > ϕ s ′ w by simp
ultimately show ?thesis by simp

next
case False
{
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assume v ∈ finished s
moreover with empty False have v ∈ finished s ′ v ∈ discovered s by simp-all
moreover with empty False have ∗: δ s w < ϕ s v δ s v < δ s w by auto
moreover have w 6= x
proof (rule notI )

assume w = x
with empty .hyps have w ∈ set (stack s) by simp
with stack-finish-discover [OF empty(2 )] 〈v ∈ finished s〉 ∗ show False by

force
qed
with empty have w ∈ finished s by auto
ultimately have ϕ s w < ϕ s v using empty .IH by simp
with False f ′ 〈w 6=x 〉 have ?thesis by simp

}
with False f ′ show ?thesis by force

qed
next

case (visit s s ′ e) hence
f ′: finish s ′ = finish s and
d ′: discover s ′ = discover s (e 7→ counter s) by simp-all

from visit have w 6= e using stack-implies-not-finished [OF visit(3 )] by auto

show ?case
proof (cases v = e)

case True with visit(9 ) have v /∈ discovered s by simp
with not-discovered-implies-not-finished [OF visit(2 )] have v /∈ finished s by

simp
with f ′ show ?thesis by simp

next
case False with 〈w 6= e〉 visit .prems f ′ d ′ have v ∈ discovered s w ∈ finished

s δ s v < δ s w v /∈ finished s ∨ δ s w < ϕ s v by auto
with visit .IH have v /∈ finished s ∨ ϕ s w < ϕ s v .
with f ′ show ?thesis by simp

qed
qed simp-all

lemma correct-order :
assumes constr : dfs-constructable dfs s
and verts: v ∈ finished s w ∈ finished s
and disc: δ s v < δ s w
shows ϕ s v < δ s w ∨ ϕ s v > ϕ s w

proof (cases δ s w < ϕ s v)
case True with interval-inclusion finished-implies-discovered assms show ?thesis

by metis
next

case False hence ϕ s v ≤ δ s w by simp
moreover from assms finished-subset-verts have v ∈ V w ∈ V by auto
with discover-neq-finish finished-implies-discovered assms have discover s w 6=
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finish s v by metis
with verts(1 ) finished-implies-discovered [OF constr verts(2 )] have δ s w 6= ϕ s

v by auto
ultimately have ϕ s v < δ s w by simp
thus ?thesis ..

qed

lemma discover-finish-implies-reach:
dfs-constructable dfs s =⇒
v ∈ discovered s =⇒ w ∈ discovered s =⇒
δ s v < δ s w =⇒ v /∈ finished s ∨ ( w ∈ finished s ∧ ϕ s v > ϕ s w)
=⇒ v →\dfs-restrict dfs+ w

proof (induction rule: dfs-constructable-induct)
case (empty s s ′ x ) hence

s ′: discover s = discover s ′ and
f ′: finish s ′ = finish s (x 7→ counter s)
by simp-all

show ?case
proof (cases v = x )

case True with empty f ′ have v /∈ finished s and finish s ′ w = finish s w
using stack-implies-not-finished [OF empty(2 )] by auto

with empty .prems empty .IH s ′ show ?thesis by force
next

case False with f ′ have fv : finish s v = finish s ′ v by simp
show ?thesis
proof (cases w ∈ finished s ′)

case False with empty .IH s ′ empty .prems fv show ?thesis by fastforce
next

case True note wf ′ = this
thus ?thesis
proof (cases v ∈ finished s ′)

case True with empty(12 ) wf ′ have ∗: ϕ s ′ w < ϕ s ′ v by simp
have w 6= x
proof (rule notI )

assume w = x
with f ′ have ϕ s ′ w = counter s by simp

moreover
from True fv have v ∈ finished s by auto
hence ϕ s v < counter s using finish-lt-counter [OF empty(2 )] by simp
with fv have ϕ s ′ v < counter s by simp
ultimately show False using ∗ by simp

qed
with ∗ fv f ′ wf ′ have w ∈ finished s ∧ ϕ s w < ϕ s v by simp
with empty .prems s ′ empty .IH show ?thesis by simp

next
case False with empty .prems empty .IH s ′ f ′ show ?thesis by simp

qed
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qed
qed

next
case (visit s s ′ e)
hence d ′: discover s ′ = discover s (e 7→ counter s)

and s ′: stack s ′ = e # stack s
and f ′: finish s ′ = finish s
and ne: v 6= w
by auto

show ?case
proof (cases v = e)

case True with d ′ ne have δ s ′ v = counter s discover s w = discover s ′ w
by auto

moreover
then have w ∈ discovered s using visit .prems by auto
hence δ s w < counter s using discover-lt-counter [OF visit(2 )] by simp

ultimately have False using visit .prems by simp
thus ?thesis ..

next
case False with d ′ have dv : discover s v = discover s ′ v by simp
show ?thesis
proof (cases w = e)

case True with s ′ have w /∈ finished s ′ using stack-implies-not-finished [OF
visit(3 )] by simp

with visit .prems have v ∈ set (stack s ′) using discovered-not-finished-implies-stack [OF
visit(3 )] by simp

with False True s ′ show ?thesis using tl-reachable-stack-hd [OF visit(3 )] by
simp

next
case False with d ′ have discover s w = discover s ′ w by simp
with dv f ′ visit .prems visit .IH show ?thesis by (cases v ∈ finished s ′) force+

qed
qed

qed simp+

lemma no-reach-discover-finish:
assumes constr : dfs-constructable dfs s
and no-reach: ¬v →? w
shows v /∈ discovered s ∨ w /∈ discovered s ∨ w /∈ finished s ∨ δ s v > δ s w ∨

(v ∈ finished s ∧ ϕ s v < ϕ s w)
proof (cases v ∈ V ∧ w ∈ V )
case False hence w /∈ discovered s ∨ v /∈ discovered s using discovered-subset-verts[OF

constr ] by auto
thus ?thesis by simp

next
case True hence verts: v ∈ V w ∈ V by simp-all
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with no-reach have ne: v 6= w using reachable-ewalk [of v w ] ewalk-empty-iff [of
v w ] by simp

from no-reach have ¬ v→\dfs-restrict dfs+ w by (metis reachable1-reachable
restr-reachable1-reachable1 )

thus ?thesis
apply (rule contrapos-np)
apply (rule discover-finish-implies-reach[OF constr , of v w ])
apply (insert discover-neq-discover [OF constr verts ne] finish-neq-finish[OF

constr verts ne])
by force+

qed

lemma both-no-reach-discover-finish:
assumes constr : dfs-constructable dfs s
and no-reach: ¬ v →? w ¬ w →? v
and fin: v ∈ finished s w ∈ finished s
shows δ s w > ϕ s v ∨ ϕ s w < δ s v

proof −
from constr fin have disc: v ∈ discovered s w ∈ discovered s using finished-implies-discovered

by metis+
with constr no-reach no-reach-discover-finish fin have δ s v > δ s w ∨ ϕ s v <

ϕ s w δ s w > δ s v ∨ ϕ s w < ϕ s v by metis+
thus ?thesis using correct-order constr fin by smt

qed

lemma rev-stack-vwalk-or-empty :
assumes dfs-constructable dfs s
shows vwalk (rev (stack s)) G ∨ stack s = []

using assms
proof (induction)

case (empty s s ′)
hence vwalk (butlast (rev (stack s))) G ∨ butlast (rev (stack s)) = []

using vwalk-butlast [of rev (stack s)] by simp
with empty show ?case by (simp add : butlast-rev-tl)

next
case (visit s s ′ e x xs) with wl-subset-verts[OF visit(2 )] have e ∈ V by auto

moreover
from visit have x ∈ V and set xs ⊆ V using stack-subset-verts[OF visit(2 )]

by auto

moreover
from visit wl-subset-succs[OF visit(2 ), of 0 ] have e ∈ succs x by auto
with visit have set (vwalk-edges (rev (stack s))) ⊆ E and (x ,e) ∈ E unfolding

succs-def by force+
with visit(4 ) have set (vwalk-edges (rev (stack s) @ [e])) ⊆ E using vwalk-edges-append [of

rev (stack s)] by simp

ultimately have vwalk (rev (stack s) @ [e]) G
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using visit by (intro vwalkI ) simp-all

with visit show ?case by simp
qed auto

lemma rev-stack-vwalk :
dfs-constructable dfs s =⇒ stack s 6= [] =⇒ vwalk (rev (stack s)) G

by (metis rev-stack-vwalk-or-empty)

lemma discover-start-eq-0 :
dfs-constructable dfs s =⇒ δ s (start s) = 0

proof (induct rule: dfs-constructable-induct)
case start thus ?case unfolding dfs-constr-start-def by simp

next
case (visit s s ′ e) hence start ′: δ s (start s ′) = 0 using dfs-step-preserves-start [OF

dfs-next-dfs-step] by auto

from visit .hyps have start s = last (stack s) using last-stack-is-start [OF visit(2 )]
by simp

with dfs-step-preserves-start [OF dfs-next-dfs-step] visit have start s ′ = last
(stack s) by auto

with visit stack-distinct [OF visit(3 )] have e 6= start s ′ by auto
with start ′ visit show ?case by simp

qed auto

lemma discovered-neq-0 :
assumes constr : dfs-constructable dfs s
and discovered : v ∈ discovered s
and ne: v 6= start s
shows δ s v > 0

proof −
from discovered constr have v ∈ V start s ∈ V start s ∈ discovered s using

discovered-subset-verts dfs-start-in-verts start-discovered by blast+
with ne discovered have δ s (start s) 6= δ s v using discover-neq-discover [OF

constr ] by force
hence δ s v 6= 0 using discover-start-eq-0 [OF constr ] by simp
thus ?thesis by simp

qed

lemma discover-gt-start :
dfs-constructable dfs s =⇒ v ∈ discovered s =⇒ v 6= start s =⇒ δ s v > δ s

(start s)
by (metis discovered-neq-0 discover-start-eq-0 )

lemma start-restr-reach-discovered :
assumes constr : dfs-constructable dfs s
and stack : stack s 6= []
and discovered : v ∈ discovered s
and ne: v 6= start s
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shows start s →\dfs-restrict dfs+ v
proof −

from assms have δ s v > δ s (start s) using discover-gt-start by metis

moreover
from stack have start s ∈ set (stack s) using last-in-set last-stack-is-start [OF

constr ] by force
with stack-implies-not-finished [OF constr ] have start s /∈ finished s by simp

ultimately show ?thesis using discover-finish-implies-reach[OF constr start-discovered [OF
constr ] discovered ] by auto
qed

lemma start-reach-discovered :
dfs-constructable dfs s =⇒ stack s 6= [] =⇒ v ∈ discovered s =⇒ start s →? v

by (metis dfs-start-in-verts restr-reachable1-reachable self-reachable start-restr-reach-discovered
verts-reduce)

lemma constr-from-restr-reach-stack :
assumes constr : s ∈ dfs-constr-from dfs x
and stack : v ∈ set (stack s)
and ne: v 6= x
shows x →\dfs-restrict dfs+ v

proof −
from stack have sne: stack s 6= [] by auto

from constr have c: dfs-constructable dfs s using dfs-constr-from-constructable
by metis

with stack have in-d : v ∈ discovered s using stack-subset-discovered by auto

from constr have start s = x using constr-from-implies-start by blast
thus ?thesis using start-restr-reach-discovered [OF c sne in-d ] ne by simp

qed

lemma constr-from-reach-stack :
assumes constr : s ∈ dfs-constr-from dfs x
and stack : v ∈ set (stack s)
shows x →? v

proof (cases x = v)
case True with stack stack-subset-verts constr have v ∈ V by auto
with True self-reachable show ?thesis by simp

next
case False with constr-from-restr-reach-stack [OF assms] show ?thesis by blast

qed

lemma finished-implies-succs-discovered :
dfs-constructable dfs s =⇒ v ∈ finished s =⇒ succs v − dfs-restrict dfs ⊆ discov-

ered s
proof (induction rule: dfs-constructable-induct)
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case (empty s s ′ x - w) with empty-wl-succs-discovered have succs x − dfs-restrict
dfs ⊆ discovered s ′ by fastforce

moreover from empty have finished s ′ = insert x (finished s) by simp
ultimately show ?case using empty by (cases v = x ) bestsimp+

qed auto

lemma finished-implies-succs-discoveredI :
[[ dfs-constructable dfs s; v ∈ finished s; w ∈ succs v ; w /∈ dfs-restrict dfs ]] =⇒

w ∈ discovered s
by (auto dest !: finished-implies-succs-discovered)

lemma finished-no-reach-implies-succs-finished :
dfs-constructable dfs s =⇒ v ∈ finished s =⇒ w ∈ succs v =⇒ w /∈ dfs-restrict

dfs =⇒ ¬ w →? v =⇒ w ∈ finished s
proof (induction rule: dfs-constructable-induct)

case (empty s s ′ x ) then have finished s ′ = insert x (finished s) and d ′: discov-
ered s = discovered s ′ by simp-all

with empty .prems empty .IH show ?case
proof (cases v = x )
case True with empty .prems have wd : w ∈ discovered s ′ using finished-implies-succs-discoveredI [OF

empty(3 )] by simp

{
assume w /∈ finished s ′

with wd have w ∈ set (stack s ′) using discovered-not-finished-implies-stack [OF
empty(3 )] by simp

with empty True have w →? v using tl-reachable-stack-hd [OF empty(2 )] by
auto

with empty .prems have False by simp
}
thus ?thesis by (rule ccontr)

qed simp
qed simp+

lemma not-finished-succs-impl-not-finished :
dfs-constructable dfs s =⇒ v ∈ discovered s =⇒ w ∈ discovered s =⇒ δ s v < δ

s w =⇒ w /∈ finished s =⇒ w ∈ succs v =⇒ v /∈ finished s
proof (induction rule: dfs-constructable-induct)

case (empty s s ′ x xs) then have
d ′: discover s = discover s ′ and
f ′: finished s ′ = insert x (finished s) and
s: stack s = x # xs and s ′: stack s ′ = xs
by simp-all

from empty .prems have w ∈ set (stack s ′) using discovered-not-finished-implies-stack [OF
empty(3 )] by simp

with s s ′ have ws: w ∈ set (stack s) by simp

have v 6= x
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proof (rule notI )
assume v = x
with ws s empty .prems have δ s w < δ s v using tl-lt-stack-hd-discover [OF

empty(2 )] by auto
with d ′ have δ s ′ w < δ s ′ v by simp
with empty .prems show False by simp

qed
with empty .prems empty .IH f ′ d ′ show ?case by simp

next
case (visit s s ′ e) hence

d ′: discover s ′ = discover s (e 7→ counter s) and
s ′: stack s ′ = e # stack s and
f ′: finish s = finish s ′

by simp-all

from visit .prems have ws ′: w ∈ set (stack s ′) using discovered-not-finished-implies-stack [OF
visit(3 )] by simp

show ?case
proof (cases w = e)

case True with visit(8 ,9 ) have w /∈ discovered s and w /∈ dfs-restrict dfs by
simp-all

hence v /∈ finished s using visit .prems finished-implies-succs-discoveredI [OF
visit(2 )] by metis

with f ′ show ?thesis by simp
next

case False with d ′ have wd : discover s w = discover s ′ w by simp
show ?thesis
proof (cases v = e)

case True with s ′ stack-implies-not-finished [OF visit(3 )] show ?thesis by
simp

next
case False with d ′ have discover s v = discover s ′ v by simp
with wd f ′ visit .prems visit .IH show ?thesis by fastforce

qed
qed

qed simp+

lemma finished-succs-finish:
dfs-constructable dfs s =⇒ v ∈ discovered s =⇒ w ∈ finished s =⇒ w ∈ succs v

=⇒ δ s w > δ s v =⇒ v /∈ finished s ∨ ϕ s w < ϕ s v
proof (induction rule: dfs-constructable-induct)

case (empty s s ′ x ) hence
d ′: discover s = discover s ′ and
f ′: finish s ′ = finish s (x 7→ counter s)
by simp-all

from empty .prems have ne: w 6= v by auto
show ?case
proof (cases w = x )
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case True with empty have w /∈ finished s using stack-implies-not-finished [OF
empty(2 )] by simp

with empty .prems d ′ have v /∈ finished s
using not-finished-succs-impl-not-finished [OF empty(2 )] finished-implies-discovered [OF

empty(3 )]
by metis

with True ne f ′ show ?thesis by force
next

case False with f ′ empty .prems have fw : finish s w = finish s ′ w by auto
show ?thesis
proof (cases v = x )

case True with f ′ have ϕ s ′ v = counter s by simp
moreover from empty .prems fw finish-lt-counter [OF empty(2 )] have ϕ s ′ w

< counter s by force
ultimately show ?thesis by simp

next
case False with f ′ have finish s v = finish s ′ v by simp
with fw empty .prems d ′ empty .IH show ?thesis by force

qed
qed

next
case (visit s s ′ e) hence

d ′: discover s ′ = discover s (e 7→ counter s) and
s ′: stack s ′ = e # stack s and
f ′: finish s = finish s ′

by simp-all

with visit .prems finished-implies-not-stack [OF visit(3 )] s ′ have w 6= e by simp
thus ?case
proof (cases v = e)

case True with s ′ show ?thesis using stack-implies-not-finished [OF visit(3 )]
by simp

next
case False with d ′ 〈w 6= e〉 have discover s v = discover s ′ v and discover s

w = discover s ′ w by auto
with f ′ visit .prems visit .IH show ?thesis by force

qed
qed simp+

lemma finished-no-reach-nondiscovered :
assumes constr : dfs-constructable dfs s
and noreach: ∀ x ∈ finished s. ∀ y ∈ set(stack s). ¬ x →\dfs-restrict dfs+ y
and nondisc: z /∈ discovered s
shows ∀ x ∈ finished s. ¬ x →\dfs-restrict dfs+ z

proof (rule ccontr)
assume ¬ (∀ x∈finished s. ¬ x →\dfs-restrict dfs+ z )
hence ∃ x ∈ finished s. x →\dfs-restrict dfs+ z by simp
then obtain x where x →\dfs-restrict dfs+ z x ∈ finished s by blast
thus False using nondisc
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proof induction
case (base y) with finished-implies-succs-discoveredI constr show False by

blast
next

case (trans y z ) hence y-disc: y ∈ discovered s by blast
have y ∈ finished s
proof (rule ccontr)

assume y /∈ finished s
with y-disc discovered-not-finished-implies-stack [OF constr ] have y ∈ set

(stack s) by simp
with trans noreach show False by simp

qed
with finished-implies-succs-discoveredI [OF constr ] trans have z ∈ finished s

by blast
with trans finished-subset-discovered [OF constr ] show False by auto

qed
qed

lemma epath-generate-sws [case-names step finished , consumes 2 ]:
assumes epath v p w and not-R: set (ewalk-verts v p) ∩ dfs-restrict dfs = {}
obtains

(step) s where s ∈ dfs-constr-from dfs v and
stack s = rev (ewalk-verts v p) and
discovered s = set (ewalk-verts v p) and
wl s 6= [] hd (wl s) = succs w and
dfs-cond dfs (state s)

| (finished) s where s ∈ dfs-constr-from dfs v ¬ dfs-cond dfs (state s)
proof −
from assms have ewalk v p w and distinct (ewalk-verts v p) unfolding epath-def

by simp-all
thus ?thesis using that 〈ewalk v p w 〉 not-R
proof (induct rule: ewalk-induct-rev)

case (Base v) thus ?case
proof (cases dfs-cond dfs (state (dfs-constr-start dfs v)))
case True with Base(1 ,2 ,6 ) Base(3 )[of dfs-constr-start dfs v ] show ?thesis

by simp
next

case False with Base(1 ,6 ) Base(4 )[of dfs-constr-start dfs v ] show ?thesis
by simp

qed
next

case (Snoc x y e es)

from Snoc(1 ,2 ,7 ) have everts: ewalk-verts v (es@[e]) = (ewalk-verts v es)@[y ]
using ewalk-verts-join-l [of v es [e]] by (simp add : ewalk-verts-def )

with Snoc(4 ,8 ) have d-everts: distinct (ewalk-verts v es) and y-not-R: y /∈
dfs-restrict dfs and es-not-R: set (ewalk-verts v es) ∩ dfs-restrict dfs = {} by auto

from ewalk-join-inner-ends[OF Snoc(7 )] Snoc(2 ) have last (ewalk-verts v es)
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= x by (simp add : ewalk-verts-def )
with ewalk-join-ewalk-l [OF Snoc(7 )] have ewalk : ewalk v es x by simp

{
fix s

assume ∗: s ∈ dfs-constr-from dfs v stack s = rev (ewalk-verts v es) discovered
s = set (ewalk-verts v es) wl s 6= [] hd (wl s) = succs x dfs-cond dfs (state s)

moreover with Snoc have y ∈ succs x hd (wl s) 6= {} unfolding succs-def
by auto

moreover from ∗ ewalk-verts-non-Nil have stack s 6= [] by simp
then obtain a as where stack s = a#as by (metis list .exhaust)
moreover

let ?s ′= s(| state := dfs-action dfs (state s) s y , stack := y#a#as, wl := succs
y#(succs x − {y})#tl (wl s), discover := (discover s)(y 7→ counter s), counter :=
Suc (counter s)|)

from Snoc(4 ) everts have y /∈ set (ewalk-verts v es) by auto
with ∗ have y /∈ discovered s by simp
ultimately have dfs-next dfs s ?s ′

unfolding dfs-next-def dfs-cond-compl-def
using dfs-step-simps(3 )[of s a as dfs] y-not-R

apply (simp add : dfs-sws.defs)
apply (intro exI [where x=y ])
apply fastforce

done

with ∗ have ?s ′ ∈ dfs-constr-from dfs v using dfs-constr-from.step by simp
with Snoc(6 ) have thesis
proof (cases dfs-cond dfs (state ?s ′))
case True with ∗ everts 〈stack s = a#as〉 have stack ?s ′ = rev (ewalk-verts

v (es@[e])) discovered ?s ′ = set (ewalk-verts v (es@[e])) wl ?s ′ 6= [] hd (wl ?s ′) =
succs y

by simp-all
with True 〈?s ′ ∈ dfs-constr-from dfs v 〉 show ?thesis using Snoc(5 ) by

metis
qed simp

}
with Snoc(3 )[OF d-everts - - ewalk es-not-R] Snoc(6 ) show ?case by metis

qed
qed

lemma reach-generate-sws [case-names step finished , consumes 1 ]:
assumes v →\dfs-restrict dfs+ w
obtains

s where s ∈ dfs-constr-from dfs v and
stack s 6= [] hd (stack s) = w and
wl s 6= [] hd (wl s) = succs w and
dfs-cond dfs (state s)

| s where s ∈ dfs-constr-from dfs v ¬ dfs-cond dfs (state s)
proof −
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from assms obtain p where ewalk v p w set (ewalk-verts v p) ∩ dfs-restrict dfs
= {} using restr-reachable1-def by blast
with epath-ewalk-to-epath epath-verts-sub-ewalk-verts have epath v (ewalk-to-epath

p) w set (ewalk-verts v (ewalk-to-epath p)) ∩ dfs-restrict dfs = {} by blast+
thus ?thesis
proof (cases rule: epath-generate-sws[where dfs=dfs])

case (step s)
from 〈epath v (ewalk-to-epath p) w 〉 have ewalk v (ewalk-to-epath p) w un-

folding epath-def by simp
hence ewlast v (ewalk-to-epath p) = w using ewalk-conv by simp

hence hd (rev (ewalk-verts v (ewalk-to-epath p))) = w using hd-rev [OF
ewalk-verts-non-Nil ] by simp

with step have hd (stack s) = w by simp
with that(1 ) step show ?thesis by simp

qed (metis that(2 ))
qed

Now introduce a notion of a finished search. This enables us to proof prop-
erties about the result of a search.

definition dfs-finished :: ( ′S , ′n, ′X ) dfs-algorithm-scheme ⇒ ( ′S , ′n) dfs-sws ⇒
bool where

dfs-finished dfs s ≡ dfs-constructable dfs s ∧ ¬(∃ s ′. dfs-next dfs s s ′)

lemma dfs-finishedE :
[[dfs-finished dfs s; [[ dfs-constructable dfs s; ¬(∃ s ′. dfs-next dfs s s ′) ]] =⇒ P ]]

=⇒ P
unfolding dfs-finished-def
by metis

lemma dfs-finishedI :
dfs-constructable dfs s =⇒ ¬(∃ s ′. dfs-next dfs s s ′) =⇒ dfs-finished dfs s

unfolding dfs-finished-def
by metis

lemma dfs-finished-stackI :
dfs-constructable dfs s =⇒ stack s = [] =⇒ dfs-finished dfs s

unfolding dfs-finished-def dfs-next-def dfs-cond-compl-def
by simp

lemma dfs-finished-wlI :
dfs-constructable dfs s =⇒ wl s = [] =⇒ dfs-finished dfs s

using dfs-finished-stackI length-wl-eq-stack
by fastforce

lemma dfs-finished-constructable[intro]:
dfs-finished dfs s =⇒ dfs-constructable dfs s

unfolding dfs-finished-def
by simp
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lemma not-dfs-cond-implies-finished :
dfs-constructable dfs s =⇒ ¬ dfs-cond dfs (state s) =⇒ dfs-finished dfs s

unfolding dfs-finished-def dfs-next-def dfs-cond-compl-def
by simp

definition dfs-completed dfs s ≡ dfs-finished dfs s ∧ dfs-cond dfs (state s)

lemma dfs-completed-finished :
dfs-completed dfs s =⇒ dfs-finished dfs s

unfolding dfs-completed-def
by simp

lemma finished-is-completed-or-not-cond :
dfs-finished dfs s =⇒ dfs-completed dfs s ∨ ¬ dfs-cond dfs (state s)

unfolding dfs-completed-def
by simp

lemma dfs-completed-constructable[dest ,simp]:
dfs-completed dfs s =⇒ dfs-constructable dfs s

by (metis dfs-completed-finished dfs-finished-constructable)

lemma dfs-completedE :
[[ dfs-completed dfs s; [[ dfs-finished dfs s; dfs-cond dfs (state s) ]] =⇒ P ]] =⇒ P

unfolding dfs-completed-def by metis

lemma dfs-completed-empty :
dfs-completed dfs s =⇒ stack s = [] ∨ wl s = []

unfolding dfs-finished-def dfs-next-def dfs-cond-compl-def dfs-completed-def
using dfs-step-exists
by auto

lemma dfs-completed-empty-stack :
dfs-completed dfs s =⇒ stack s = []

using length-wl-eq-stack dfs-completed-empty
by force

lemma dfs-completed-empty-wl :
dfs-completed dfs s =⇒ wl s = []

using length-wl-eq-stack dfs-completed-empty
by force

lemma dfs-completed-stackI :
dfs-constructable dfs s =⇒ stack s = [] =⇒ dfs-cond dfs (state s) =⇒ dfs-completed

dfs s
unfolding dfs-completed-def
using dfs-finished-stackI
by simp

lemma dfs-completed-wlI :

37



dfs-constructable dfs s =⇒ wl s = [] =⇒ dfs-cond dfs (state s) =⇒ dfs-completed
dfs s
using dfs-completed-stackI length-wl-eq-stack
by fastforce

lemma dfs-completed-revE [case-names prev , induct pred : dfs-completed ]:
assumes finished : dfs-completed dfs s
and prev :

∧
s r . [[ dfs-constructable dfs r ; dfs-next dfs r s; dfs-completed

dfs s; s = r(| stack := [], wl := [], finish := (finish r)(hd (stack r) 7→ counter r),
counter := Suc (counter r), state := dfs-post dfs (state r) r (hd (stack r))|) ]] =⇒
P s

shows P s
proof −
from finished have sempty : stack s = [] wl s = [] using dfs-completed-empty-stack

dfs-completed-empty-wl by auto

from finished have dfs-constructable dfs s by (rule dfs-completed-constructable)
thus ?thesis
proof (cases rule: dfs-constructable.cases)

case start thus ?thesis using sempty by (simp add : dfs-constr-start-def )
next

case (step r)
then have s = r(| stack := [], wl := [], finish := (finish r)(hd (stack r) 7→

counter r), counter := Suc (counter r), state := dfs-post dfs (state r) r (hd (stack
r)) |)

using sempty
by (cases rule: dfs-next-cases-elem) auto

with assms step show ?thesis by simp
qed

qed

lemma dfs-completed-prev-stack :
assumes finished : dfs-completed dfs s
and step: dfs-next dfs r s
and constr : dfs-constructable dfs r
shows stack r = [start s]

proof −
note emp = dfs-completed-empty-stack [OF finished ]
show ?thesis
using step emp assms
proof (cases)

case (empty x xs) with emp obtain e where stack r = [e] by simp
with last-stack-is-start [OF constr ] have stack r = [start r ] by simp
with step dfs-step-preserves-start [OF dfs-next-dfs-step, OF step] show ?thesis

by auto
qed auto

qed

lemma completed-start-finished :
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dfs-completed dfs s =⇒ start s ∈ finished s
proof (induct rule: dfs-completed-revE )

case (prev s r) then have finish s = finish r (hd (stack r) 7→ counter r) by
simp
with prev have finish s = finish r (start s 7→ counter r) using dfs-completed-prev-stack [OF

prev(3 ,2 ,1 )] by force
thus ?case by auto

qed

lemma completed-start-finish-eq-counter :
dfs-completed dfs s =⇒ ϕ s (start s) = counter s − 1

proof (induct rule: dfs-completed-revE )
case (prev s r) then have finish s = finish r (hd (stack r) 7→ counter r) by

simp
with prev have finish s = finish r (start s 7→ counter r) using dfs-completed-prev-stack [OF

prev(3 ,2 ,1 )] by force
with prev show ?case by simp

qed

lemma completed-finish-lt-start :
dfs-completed dfs s =⇒ v ∈ finished s =⇒ v 6= start s =⇒ ϕ s v < ϕ s (start s)

proof (induct rule: dfs-completed-revE )
case (prev s r) then have finish s = finish r (hd (stack r) 7→ counter r) by

simp
with prev have ∗:finish s = finish r (start s 7→ counter r) using dfs-completed-prev-stack [OF

prev(3 ,2 ,1 )] by force
hence ϕ s (start s) = counter r by simp

moreover
from prev .prems ∗ have fv : finish r v = finish s v by simp
with prev .prems finish-lt-counter [OF prev(1 )] have ϕ r v < counter r by force
with fv have ϕ s v < counter r by simp

ultimately show ?case by simp
qed

lemma completed-finished-eq-discovered :
dfs-completed dfs s =⇒ finished s = discovered s

using dfs-completed-empty-stack
using finished-stack-eq-discovered [OF dfs-completed-constructable]
by (metis List .set .simps(1 ) Un-empty-right)

lemma completed-start-finished-restr-reach:
assumes compl : dfs-completed dfs s
and finished : v ∈ finished s
and ne: v 6= start s
shows start s →\dfs-restrict dfs+ v

using assms
proof (induct rule: dfs-completed-revE )
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case (prev s r) with finished-implies-discovered have v ∈ discovered s stack r 6=
[] discovered s = discovered r by (blast , simp-all)
with prev have start r →\dfs-restrict dfs+ v using start-restr-reach-discovered [OF

prev(1 )] by simp
with prev show ?case by simp

qed

lemma completed-start-finished-reach:
assumes compl : dfs-completed dfs s
and finished : v ∈ finished s
shows start s →? v

proof (cases start s = v)
case True with dfs-start-in-verts compl self-reachable show ?thesis by auto

next
case False with assms completed-start-finished-restr-reach show ?thesis by blast

qed

lemma completed-reach-implies-finished :
assumes compl : dfs-completed dfs s
and fin: v ∈ finished s
and reach: v →\dfs-restrict dfs+ w
shows w ∈ finished s

proof −
{

fix v z
assume v ∈ finished s z ∈ succs v z /∈ dfs-restrict dfs
with finished-implies-succs-discoveredI compl have z ∈ discovered s by blast
with compl completed-finished-eq-discovered have z ∈ finished s by blast

}
with reach fin show ?thesis by induction blast+

qed

lemma completed-start-reach-finished :
dfs-completed dfs s =⇒ start s →\dfs-restrict dfs+ v =⇒ v ∈ finished s

by (metis completed-start-finished completed-reach-implies-finished)

lemma completed-finished-eq-reachable:
assumes compl : dfs-completed dfs s
shows finished s = {v . v = start s ∨ start s →\dfs-restrict dfs+ v} (is ... = ?F )

proof (rule set-eqI [OF iffI ])
fix x
assume x ∈ finished s
hence x = start s ∨ start s →\dfs-restrict dfs+ x
using completed-start-finished-restr-reach[OF compl ] completed-start-finished [OF

compl ]
by (cases x = start s) simp-all

thus x ∈ ?F ..
next

fix x
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assume x ∈ ?F
hence x = start s ∨ start s →\dfs-restrict dfs+ x ..
thus x ∈ finished s using completed-start-finished [OF compl ] completed-start-reach-finished [OF

compl ] by blast
qed

lemma no-restrict-finished-eq-reachable:
assumes compl : dfs-completed dfs s
and no-restr : dfs-restrict dfs ∩ V = {}
shows finished s = {v . start s →? v}

proof −
from compl have finished s = {v . v = start s ∨ start s →\dfs-restrict dfs+ v}

by (fact completed-finished-eq-reachable)
also from no-restr have ... = {v . v = start s ∨ start s →+ v} using restr-reachable1-no-verts

by simp
also from reachable1-reachable have ... = {v . v = start s ∨ start s →? v} by

blast
also from self-reachable dfs-start-in-verts compl have ... = {v . start s →? v}

by force
finally show ?thesis .

qed

lemma completed-finished-succs-finish:
assumes compl : dfs-completed dfs s
and finished : v ∈ finished s
and d-lt : δ s v < δ s w
and succs: w ∈ succs v
and w /∈ dfs-restrict dfs
shows ϕ s w < ϕ s v

proof −
from compl have constr : dfs-constructable dfs s by simp
moreover from finished have v ∈ discovered s using finished-implies-discovered [OF

constr ] by simp
moreover hence v /∈ dfs-restrict dfs using discovered-not-restricted [OF constr ]

by simp
with 〈w /∈ dfs-restrict dfs〉 succs succs-restricted have v →\dfs-restrict dfs+ w

by simp
with completed-reach-implies-finished [OF compl finished ] have w ∈ finished s .

ultimately show ?thesis using finished-succs-finish succs d-lt finished by fastforce
qed

lemma dfs-finished-cases [case-names start step, consumes 1 ]:
assumes fin: dfs-finished dfs s
and start : ¬ dfs-cond dfs (dfs-start dfs (start s)) =⇒ P
and step:

∧
r . [[ dfs-constructable dfs r ; dfs-next dfs r s ]] =⇒ P

shows P
proof (cases s = dfs-constr-start dfs (start s))

case True hence stack s 6= [] and st : state s = dfs-start dfs (start s) using
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dfs-constr-start-simps[of dfs start s] by simp-all
hence ¬ dfs-completed dfs s using dfs-completed-empty-stack by blast
with fin finished-is-completed-or-not-cond have ¬ dfs-cond dfs (state s) by blast
with st start show ?thesis by simp

next
case False
from fin have dfs-constructable dfs s by auto
hence ∃ r . dfs-constructable dfs r ∧ dfs-next dfs r s using False

by (cases rule: dfs-constructable.cases) auto
with step show ?thesis by blast

qed
end

1.3 Lifting into the while’d

We add an invariant field to the dfs.

record ( ′S , ′n) dfs-algorithm-invar = ( ′S , ′n) dfs-algorithm +
dfs-invar :: ( ′S , ′n) dfs-sws ⇒ bool — an invariant that each state built during

the search must satisfy. This is dropped in the implementation.

context finite-digraph
begin

dfs-invar-compl specifies the invariants that must hold on each working
state. If a state does not fulfill parts of the invariant, the behavior of the
dfs-algorithm is undefined. As stated later on by dfs-relation-terminates, it
is guaranteed, that when starting with an invariant-obeying state, all states
reached by the algorithms also obey them.

Similar to dfs-cond-compl it is split between invariants of the framework and
invariants of the implementation. Here the invariant of the framework is,
that the state is constructable, as given by dfs-constructable defined earlier.

definition dfs-invar-compl :: ( ′S , ′n, ′X ) dfs-algorithm-invar-scheme ⇒ ′n ⇒ ( ′S
, ′n) dfs-sws ⇒ bool
where

dfs-invar-compl dfs x s ≡ s ∈ dfs-constr-from dfs x ∧ dfs-invar dfs s

lemma dfs-invar-compl-invar [dest ]:
dfs-invar-compl dfs x s =⇒ dfs-invar dfs s

unfolding dfs-invar-compl-def
by simp

lemma dfs-invar-compl-constr-from[dest ]:
dfs-invar-compl dfs x s =⇒ s ∈ dfs-constr-from dfs x

unfolding dfs-invar-compl-def
by auto

lemma dfs-invar-compl-constr [dest ]:
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dfs-invar-compl dfs x s =⇒ dfs-constructable dfs s
by auto

lemma dfs-invar-complE :
[[ dfs-invar-compl dfs x s; [[ s ∈ dfs-constr-from dfs x ; dfs-invar dfs s ]] =⇒ P ]]

=⇒ P
unfolding dfs-invar-compl-def
by metis

lemma dfs-invar-complI :
[[ s ∈ dfs-constr-from dfs x ; dfs-invar dfs s ]] =⇒ dfs-invar-compl dfs x s

unfolding dfs-invar-compl-def
by simp

And now we initialize the datastructures of the while-framework and show,
that we behave as the framework expects us to behave.

definition dfs-fun :: ( ′S , ′n, ′X ) dfs-algorithm-invar-scheme ⇒ ′n ⇒ ( ′S , ′n) dfs-sws
nres where

dfs-fun dfs x ≡
WHILET

(dfs-invar-compl dfs x ) (dfs-cond-compl dfs) (λ s. SPEC (λs ′.
dfs-next dfs s s ′)) (dfs-constr-start dfs x )

We now state certain predicates the implementations have to obey. These
predicates are used as assumptions for specifying properties of the DFS-
algorithm.

Start with the need of the implementation to preserve its invariants.

definition dfs-preserves-invar :: ( ′S , ′n, ′X ) dfs-algorithm-invar-scheme ⇒ bool
where

dfs-preserves-invar dfs ≡
(∀ x ∈ V . dfs-invar dfs (dfs-constr-start dfs x )) ∧
(∀ x s s ′. dfs-invar-compl dfs x s ∧ dfs-next dfs s s ′ −→

dfs-invar dfs s ′)

lemma dfs-preserves-invarI :
[[
∧

x s s ′. [[ dfs-invar-compl dfs x s; dfs-next dfs s s ′ ]] =⇒ dfs-invar dfs s ′;
∧

x . x
∈ V =⇒ dfs-invar dfs (dfs-constr-start dfs x ) ]]

=⇒ dfs-preserves-invar dfs
unfolding dfs-preserves-invar-def
by blast

lemma dfs-preserves-invarD [intro]:
[[ dfs-preserves-invar dfs; dfs-invar-compl dfs x s; dfs-next dfs s s ′ ]] =⇒ dfs-invar

dfs s ′

unfolding dfs-preserves-invar-def
by blast

lemma dfs-preserves-invarE [elim]:
assumes dfs-preserves-invar dfs
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and [[
∧

x s s ′. [[ dfs-invar-compl dfs x s; dfs-next dfs s s ′ ]] =⇒ dfs-invar dfs s ′ ]]
=⇒ P

shows P
using assms
unfolding dfs-preserves-invar-def
by blast

lemma dfs-preserves-invar-compl :
assumes dfs-preserves-invar dfs
and dfs-invar-compl dfs x s
and dfs-next dfs s s ′

shows dfs-invar-compl dfs x s ′

using assms
by (metis dfs-constr-from.step dfs-invar-compl-def dfs-preserves-invarD)

lemma constr-from-invar-compl :
s ∈ dfs-constr-from dfs x =⇒ dfs-preserves-invar dfs =⇒ dfs-invar-compl dfs x s

proof (induct rule: dfs-constr-from.induct)
case (step s s ′) with dfs-preserves-invar-compl show ?case by simp

next
case start thus ?case by (simp add : dfs-invar-compl-def dfs-preserves-invar-def )

qed

lemma constr-from-invarI [intro!]:
s ∈ dfs-constr-from dfs x =⇒ dfs-preserves-invar dfs =⇒ dfs-invar dfs s

by (auto dest : constr-from-invar-compl)

lemma dfs-constructable-invarI [intro!]:
dfs-constructable dfs s =⇒ dfs-preserves-invar dfs =⇒ dfs-invar dfs s

by (auto elim!: dfs-constructable-constr-from-start)

Introduce a measure, that lessens with each search-step. Therefore we define
a measure to be a four-tuple, s.t. with each step one element gets smaller
and all the previous ones remain equal:

1. undiscovered nodes (lessens in the visit phase)

2. length of the search stack (lessens in the empty phase)

3. unchecked successors (lessens in the phases visit and remove, but for
visit the first item already applies)

abbreviation
dfs-step-measure ≡ less-than <∗lex∗> less-than <∗lex∗> less-than

lemma wf-dfs-step-measure:
wf dfs-step-measure
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by auto

definition ws-to-measure :: ( ′n, ′X ) dfs-ws-scheme ⇒ (nat × nat × nat)
where

ws-to-measure ws ≡ ( card (V − discovered ws), length (stack ws), card (hd (wl
ws)))

definition ws-rel :: (( ′n, ′X ) dfs-ws-scheme × ( ′n, ′X ) dfs-ws-scheme) set where
ws-rel = {(ws ′, ws). (ws-to-measure ws ′, ws-to-measure ws) ∈ dfs-step-measure}

lemma ws-rel-alt-def :
ws-rel = inv-image dfs-step-measure ws-to-measure

unfolding ws-rel-def inv-image-def
by simp

theorem wf-ws-rel :
wf ws-rel

unfolding ws-rel-alt-def
by (rule wf-inv-image[OF wf-dfs-step-measure])

lemma ws-rel-intro:
(ws-to-measure ws ′, ws-to-measure ws) ∈ dfs-step-measure =⇒ (ws ′, ws) ∈ ws-rel

unfolding ws-rel-def
by simp

Now show, that this measure indeed applies to the algorithm.

lemma dfs-next-in-ws-rel :
assumes step: dfs-next dfs s s ′

and inv : dfs-invar-compl dfs x s
shows (s ′, s) ∈ ws-rel

using assms
proof (cases rule: dfs-next-cases-elem)

case (empty x xs)
then have card (V − discovered s) = card (V − discovered s ′) by simp
with empty show ?thesis by (simp add : ws-to-measure-def ws-rel-intro)

next
case (remove e)
from inv have c: dfs-constructable dfs s by auto
with wl-subset-succs[OF this, of 0 ] remove have ∗: e ∈ succs (hd (stack s ′)) by

auto

from remove wl-finite[OF c] have F : finite (hd (wl s)) using hd-in-set by simp

from remove have card (V − discovered s) = card (V − discovered s ′) by auto
moreover from remove have length (stack s) = length (stack s ′) by auto
moreover from remove ∗ have hd (wl s) ⊃ hd (wl s ′) by auto
with psubset-card-mono[OF F ] have card (hd (wl s)) > card (hd (wl s ′)) .

ultimately show ?thesis by (simp add : ws-to-measure-def ws-rel-intro)
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next
case (restrict e)
from inv have c: dfs-constructable dfs s by auto
with wl-subset-succs[OF this, of 0 ] restrict have ∗: e ∈ succs (hd (stack s ′)) by

auto

from restrict wl-finite[OF c] have F : finite (hd (wl s)) using hd-in-set by simp

from restrict have card (V − discovered s) = card (V − discovered s ′) by auto
moreover from restrict have length (stack s) = length (stack s ′) by auto
moreover from restrict ∗ have hd (wl s) ⊃ hd (wl s ′) by auto
with psubset-card-mono[OF F ] have card (hd (wl s)) > card (hd (wl s ′)) .

ultimately show ?thesis by (simp add : ws-to-measure-def ws-rel-intro)
next

case visit hence dsub: discovered s ⊂ discovered s ′ by auto

from finite-V have finite (V − discovered s) ..

moreover
from step inv have dfs-constructable dfs s ′ by (metis dfs-constructable.step

dfs-invar-compl-constr)
with visit have discovered s ′ ⊆ V using discovered-subset-verts[of dfs s ′] by

(simp-all add : dfs-sws.defs)

with dsub have V − discovered s ′ ⊂ V − discovered s by blast

ultimately have card (V − discovered s) > card (V − discovered s ′) by (rule
psubset-card-mono)

then show ?thesis by (simp add : ws-to-measure-def ws-rel-intro)
qed

lemma exists-finished :
assumes pre: x ∈ V x /∈ dfs-restrict dfs
and inv : dfs-preserves-invar dfs
shows ∃ s ∈ dfs-constr-from dfs x . dfs-finished dfs s

proof −
from assms have dfs-constr-start dfs x ∈ dfs-constr-from dfs x by simp
with wfE-min[OF wf-ws-rel ] obtain z where z : z ∈ dfs-constr-from dfs x

∧
y .

(y ,z ) ∈ ws-rel =⇒ y /∈ dfs-constr-from dfs x by blast
moreover with inv have dfs-invar-compl dfs x z using constr-from-invar-compl

by blast
ultimately have ¬ (∃ y . dfs-next dfs z y) by (blast intro: dfs-constr-from.step

dfs-next-in-ws-rel)
with z show ?thesis by (blast intro: dfs-finishedI )

qed

theorem dfs-fun-correct :
assumes dfs-preserves-invar dfs
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and x ∈ V x /∈ dfs-restrict dfs
shows dfs-fun dfs x ≤ SPEC (λ s. s ∈ dfs-constr-from dfs x ∧ dfs-finished dfs s)

unfolding dfs-fun-def
proof (intro refine-vcg)

show wf ws-rel by (fact wf-ws-rel)
next
from assms show dfs-invar-compl dfs x (dfs-constr-start dfs x ) unfolding dfs-invar-compl-def

dfs-preserves-invar-def by (auto intro!: dfs-constructable.start)
next

from assms show
∧

s s ′. [[dfs-cond-compl dfs s; dfs-invar-compl dfs x s; dfs-next
dfs s s ′]] =⇒ dfs-invar-compl dfs x s ′ ∧ (s ′, s) ∈ ws-rel

by (blast intro: dfs-preserves-invar-compl dfs-next-in-ws-rel)
next
show

∧
s. [[dfs-invar-compl dfs x s; ¬ dfs-cond-compl dfs s]] =⇒ s ∈ dfs-constr-from

dfs x ∧ dfs-finished dfs s by (metis dfs-finishedI dfs-invar-complE dfs-invar-compl-constr
dfs-nextE )
qed

lemma dfs-fun-nofail [refine-pw-simps]:
assumes dfs-preserves-invar dfs
and x ∈ V x /∈ dfs-restrict dfs
shows nofail (dfs-fun dfs x )

using dfs-fun-correct [OF assms]
by (rule pwD) simp

lemma dfs-fun-finished :
assumes dfs-preserves-invar dfs
and x ∈ V x /∈ dfs-restrict dfs
and inres (dfs-fun dfs x ) s
shows dfs-finished dfs s

proof −
note dfs-fun-correct [OF assms(1−3 )]
with assms(4 ) have inres (SPEC (λs. s ∈ dfs-constr-from dfs x ∧ dfs-finished

dfs s)) s using pwD2 by best
thus ?thesis by simp

qed

lemma dfs-fun-constructable:
assumes dfs-preserves-invar dfs
and x ∈ V x /∈ dfs-restrict dfs
and inres (dfs-fun dfs x ) s
shows s ∈ dfs-constr-from dfs x

proof −
note dfs-fun-correct [OF assms(1−3 )]
with assms(4 ) have inres (SPEC (λs. s ∈ dfs-constr-from dfs x ∧ dfs-finished

dfs s)) s using pwD2 by best
thus ?thesis by simp

qed
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lemma dfs-step-refine [refine-transfer ]:
assumes dfs-cond-compl dfs s
shows RETURN (SOME s ′. s ′ ∈ dfs-step dfs s) ≤ SPEC (λ s ′. dfs-cond-compl

dfs s ∧ s ′ ∈ dfs-step dfs s)
using dfs-cond-compl-step-exists[OF assms] assms
by (auto intro: someI2-ex )

schematic-lemma dfs-fun-code:
RETURN ?f ≤ dfs-fun dfs x

unfolding dfs-fun-def dfs-next-def
by (refine-transfer while.transfer-WHILEIT-esc-cond)

lemma dfs-fun-nonempty :
∃ s. inres (dfs-fun dfs x ) s

proof (cases dfs-fun dfs x )
case (RES X ) with dfs-fun-code[of dfs x ] have X 6= {} by auto
with RES show ?thesis by auto

qed simp

lemma dfs-fun-pred :
assumes x : x ∈ V x /∈ dfs-restrict dfs
and pres-inv : dfs-preserves-invar dfs
and one-d :

∧
s. [[ s ∈ dfs-constr-from dfs x ; ¬ dfs-cond-compl dfs s ]] =⇒ P s =⇒

Q s
and snd-d :

∧
s. [[ s ∈ dfs-constr-from dfs x ; dfs-completed dfs s ]] =⇒ Q s =⇒ P

s
and thrd-d :

∧
s. [[ s ∈ dfs-constr-from dfs x ; ¬ dfs-cond dfs (state s) ]] =⇒ P s

shows dfs-fun dfs x ≤ SPEC (λs. P s ←→ Q s)
unfolding dfs-fun-def
apply (intro refine-vcg)

apply (fact wf-ws-rel)
apply (simp add : dfs-invar-compl-def x pres-inv [unfolded dfs-preserves-invar-def ])
apply (simp add : pres-inv dfs-next-in-ws-rel dfs-preserves-invar-compl)

proof −
fix s
assume dfs-invar-compl dfs x s and ncond : ¬ dfs-cond-compl dfs s
hence constr : s ∈ dfs-constr-from dfs x and

cond : stack s = [] ∨ wl s = [] ∨ ¬ dfs-cond dfs (state s)
unfolding dfs-cond-compl-def dfs-invar-compl-def by simp-all

show P s ←→ Q s
proof

assume P s
with one-d constr ncond show Q s by metis

next
assume Q s
with constr cond show P s
proof (cases dfs-cond dfs (state s))
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case True with cond have stack s = [] ∨ wl s = [] by simp
with length-wl-eq-stack constr have stack s = [] by force
with True have dfs-completed dfs s using dfs-completed-stackI constr by

force
with 〈Q s〉 show ?thesis using snd-d constr by metis

qed (metis thrd-d)
qed

qed

end

2 Simple DFS

Introduce a simple dfs algorithm, that ignores all post and pre functions and
just returns the filled discover and finish sets.

definition simple-dfs :: (unit , ′n) dfs-algorithm-invar where
simple-dfs = (| dfs-cond = λ-. True,

dfs-action = λ- - - . (),
dfs-post = λ- - -. (),
dfs-remove = λ- - -. (),
dfs-start = λ-. (),
dfs-restrict = {},
dfs-invar = λ-. True |)

lemma simple-dfs-simps [simp]:
dfs-cond simple-dfs S
dfs-action simple-dfs S s x = ()
dfs-post simple-dfs S s x = ()
dfs-remove simple-dfs S s x = ()
dfs-start simple-dfs x = ()
dfs-invar simple-dfs s
dfs-restrict simple-dfs = {}

by (simp-all add : simple-dfs-def )

lemma (in finite-digraph) simple-dfs-preserves-invar :
dfs-preserves-invar simple-dfs

by (rule dfs-preserves-invarI ) simp-all
end

theory Tree-DFS
imports Main DFS
begin

type-synonym ( ′n) tree = ( ′n × ′n) set

definition add-edge :: ′n tree ⇒ ( ′n tree, ′n) dfs-sws ⇒ ′n ⇒ ′n tree where
add-edge e sws n = insert (hd (stack sws), n) e
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definition tdfs :: ( ′n tree, ′n) dfs-algorithm-invar where
tdfs = (| dfs-cond = λ-. True, dfs-action = add-edge, dfs-post = λ s - -. s,

dfs-remove = λ s - -. s, dfs-start = λ-. {}, dfs-restrict = {}, dfs-invar = λ-. True
|)

definition edges :: ( ′n tree, ′n, ′X ) dfs-sws-scheme ⇒ ′n tree
where edges s = state s

declare edges-def [simp]

context finite-digraph
begin

lemma tdfs-simps[simp]:
dfs-cond tdfs S
dfs-action tdfs = add-edge
dfs-post tdfs S s x = S
dfs-remove tdfs S s x = S
dfs-start tdfs x = {}
dfs-restrict tdfs = {}
dfs-invar tdfs s

unfolding tdfs-def
by simp-all

lemma dfs-next-edges-subset :
dfs-next tdfs s s ′ =⇒ edges s ⊆ edges s ′

by (cases rule: dfs-next-cases-elem) (auto simp add : dfs-sws.defs add-edge-def )

lemma no-self-edges:
dfs-constructable tdfs s =⇒ (v , w) ∈ edges s =⇒ v 6= w

proof (induction rule: dfs-constructable-induct)
case (visit s s ′ t x xs) hence

s ′: stack s ′ = t#x#xs and
e ′: edges s ′ = insert (x , t) (edges s)
by (simp-all add : add-edge-def )

from s ′ have x 6= t using stack-distinct [OF visit(3 )] by auto
thus ?case
proof (cases (v ,w) = (x , t))

case False with e ′ visit .prems have (v ,w) ∈ edges s by auto
with visit .IH show ?thesis .

qed simp
qed simp+

lemma stack-tl-subset-edges:
dfs-constructable tdfs s =⇒ stack s 6= [] =⇒ set (tl(stack s)) ⊆ Field (edges s)

by (induct rule: dfs-constructable-induct) (auto simp add : add-edge-def tl-subset)
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lemma stack-hd-in-edges:
dfs-constructable tdfs s =⇒ edges s 6= {} =⇒ stack s 6= [] =⇒ hd (stack s) ∈

Field (edges s)
proof (induct rule: dfs-constructable-induct)

case (empty s s ′)
hence set (stack s ′) ⊆ Field (edges s ′) using stack-tl-subset-edges[OF empty(2 )]

by simp
with empty .prems show ?case by (cases stack s ′) simp-all

qed (simp add : add-edge-def )+

lemma stack-subset-edges:
assumes constr : dfs-constructable tdfs s
and ne: edges s 6= {}
shows set (stack s) ⊆ Field (edges s)

proof (cases stack s)
case (Cons x xs) then have set xs ⊆ Field (edges s) using stack-tl-subset-edges[OF

constr ] by simp
moreover from Cons have x ∈ Field (edges s) using stack-hd-in-edges[OF

assms] by simp
ultimately show ?thesis using Cons by simp

qed simp

lemma stack-gt-1-implies-edges:
assumes dfs-constructable tdfs s
and length (stack s) > 1
shows edges s 6= {}

using stack-tl-subset-edges[OF assms(1 )] assms(2 )
by (cases stack s) auto

lemma edges-stack-is-discovered :
assumes dfs-constructable tdfs s
and stack s 6= []
shows Field (edges s) ∪ set (stack s) = discovered s

using assms
proof induction

case (empty s s ′) hence stack s ′ = tl (stack s) by simp
with 〈stack s ′ 6= []〉 have length (stack s) > 1 by (smt length-0-conv length-tl)
with empty have set (stack s) ⊆ Field (edges s) using stack-subset-edges

stack-gt-1-implies-edges by metis
with empty have Field (edges s ′) = discovered s ′ by auto
thus ?case using stack-subset-discovered [OF dfs-constructable.step[OF empty(1 ,2 )]]

by auto
next

case (visit s s ′ t x ) hence
e ′: edges s ′ = insert (x , t) (edges s) and
s ′: stack s ′ = t # stack s
by (simp-all add : add-edge-def )

hence Field (edges s ′) = {x , t} ∪ Field (edges s) by auto
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with s ′ have Field (edges s ′) ∪ set(stack s ′) = Field (edges s) ∪ {x , t} ∪ set
(stack s) by auto

also with visit have ... = insert t (Field (edges s) ∪ set (stack s)) by auto
also with visit have ... = discovered s ′ by simp
finally show ?case .

qed simp+

lemma completed-edges-eq-discovered :
assumes dfs-completed tdfs s
and edges s 6= {}
shows Field (edges s) = discovered s

using assms
proof induct

case (prev s r) then have ne: edges r 6= {} by simp

from prev have stack-r : stack r = [start s] using dfs-completed-prev-stack by
blast

with prev ne have start s ∈ Field (edges r) using stack-hd-in-edges[of r ] by
force

with edges-stack-is-discovered [of r , OF prev(1 )] stack-r have Field (edges r) =
discovered r by force

with prev show ?case by simp
qed

lemma edges-subset-discovered :
assumes dfs-constructable tdfs s
shows Field (edges s) ⊆ discovered s

using edges-stack-is-discovered [OF assms(1 )]
proof (cases stack s)

case Cons then show ?thesis using edges-stack-is-discovered [OF assms(1 )] by
auto
next
case Nil with assms have dfs-completed tdfs s using dfs-completed-stackI tdfs-simps(1 )

by force
from completed-edges-eq-discovered [OF this] show ?thesis by (cases edges s =
{}) simp-all
qed

lemma etrancl-is-discovered :
assumes constr : dfs-constructable tdfs s
and etrancl : (v ,w) ∈ (edges s)+

shows v ∈ discovered s and w ∈ discovered s
proof −

from edges-subset-discovered [OF constr ] have (edges s)+ ⊆ discovered s × dis-
covered s using trancl-subset-Field2 by auto

with etrancl show v ∈ discovered s w ∈ discovered s by auto
qed
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lemma edges-subset-E :
dfs-constructable tdfs s =⇒ edges s ⊆ E

proof (induction rule: dfs-constructable-induct)
case (visit s s ′ t x ) hence e ′: edges s ′ = insert (x ,t) (edges s) by (simp add :

add-edge-def )
moreover from wl-subset-succs[OF visit(2 ), of 0 ] visit have t ∈ succs x by

auto
ultimately have (x , t) ∈ E unfolding succs-def by simp
with e ′ visit .IH show ?case by simp

qed simp+

lemma edge-is-succs:
assumes dfs-constructable tdfs s
and (v , w) ∈ edges s
shows w ∈ succs v

proof −
from assms have (v , w) ∈ E using edges-subset-E by auto
thus ?thesis by (auto simp add : succs-def )

qed

lemma discover-edge:
dfs-constructable tdfs s =⇒ (v ,w) ∈ edges s =⇒ δ s v < δ s w

proof (induction rule: dfs-constructable-induct)
case (visit s s ′ t x ) hence

e ′: edges s ′ = insert (x , t) (edges s) and
d ′: discover s ′ = (discover s)(t 7→ counter s)
by (simp-all add : add-edge-def )

show ?case
proof (cases (v ,w) ∈ edges s)

case True
from visit(9 ) have t /∈ Field (edges s) using visit(2 ) edges-subset-discovered

by auto
with True have v 6= t and w 6= t unfolding Field-def by auto
with d ′ visit .IH True show ?thesis by auto

next
case False
with visit e ′ have (v ,w) = (x , t) by auto

moreover from visit have t 6= x using stack-distinct [OF visit(3 )] by auto

moreover
from visit have x ∈ discovered s using stack-subset-discovered [OF visit(2 )]

by auto
hence δ s x < counter s using discover-lt-counter [OF visit(2 )] by simp

ultimately show ?thesis using d ′ by simp
qed

qed simp+
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lemma discover-etrancl :
assumes constr : dfs-constructable tdfs s
and reach: (v ,w) ∈ (edges s)+

shows δ s v < δ s w
using reach discover-edge[OF constr ]
by induct force+

lemma no-cycle:
dfs-constructable tdfs s =⇒ (v ,w) ∈ (edges s)+ =⇒ v 6= w

by (blast dest : discover-etrancl)

lemma stack-contains-edges-all :
dfs-constructable tdfs s =⇒ ∀ n < length (stack s) − 1 . (stack s ! Suc n, stack

s ! n) ∈ edges s
proof (induction rule: dfs-constructable-induct)

case (empty s s ′ x xs) then show ?case by (induct xs) auto
next

case (visit s s ′ t x ) hence
e ′: edges s ′ = insert (x , t) (edges s) and
s ′: stack s ′ = t # stack s
by (simp-all add : add-edge-def )

with visit have t = stack s ′ ! 0 and x = stack s ′ ! Suc 0 using nth-Cons-0
hd-conv-nth by simp-all

with e ′ have (stack s ′ ! Suc 0 , stack s ′ ! 0 ) ∈ edges s ′ by simp

moreover
from e ′ s ′ visit .IH have

∧
n. n < (length (stack s ′)) − 1 =⇒ n > 0 =⇒ (stack

s ′ ! Suc n, stack s ′ ! n) ∈ edges s ′

by (smt gr0-implies-Suc insertI2 list .size(4 ) nth-Cons-Suc)

ultimately show ?case by smt
qed simp+

lemma stack-contains-edges:
dfs-constructable tdfs s =⇒ n < length (stack s) − 1 =⇒ (stack s ! Suc n, stack

s ! n) ∈ edges s
by (metis stack-contains-edges-all)

lemma nth-stack-hd-in-etrancl :
dfs-constructable tdfs s =⇒ n < length (stack s) =⇒ n > 0 =⇒ (stack s ! n,

stack s ! 0 ) ∈ (edges s)+

by (metis nth-step-trancl stack-contains-edges)

lemma hd-stack-no-cycle:
assumes constr : dfs-constructable tdfs s
and edge: (hd (stack s), w) ∈ (edges s)+

and ne: stack s 6= []
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shows w /∈ set (stack s)
proof (rule notI )

assume A: w ∈ set (stack s)
then obtain n where n: n < length (stack s) stack s ! n = w unfolding

in-set-conv-nth by auto

from A edge no-cycle[OF constr ] have w 6= hd (stack s) by auto
with n have n > 0 by (smt hd-conv-nth ne)
with n nth-stack-hd-in-etrancl [OF constr ] have (w , hd(stack s)) ∈ (edges s)+

using hd-conv-nth[OF ne] by auto
with edge have (w ,w) ∈ (edges s)+ by auto
with no-cycle[OF constr ] show False by auto

qed

lemma no-edge-to-stack :
dfs-constructable tdfs s =⇒ (v , w) ∈ edges s =⇒ v /∈ set (stack s) =⇒ w /∈ set

(stack s)
proof (induction rule: dfs-constructable-induct)

case (empty s s ′) hence edge: (v ,w) ∈ edges s by simp
from empty have ne: stack s 6= [] and tl : stack s ′ = tl (stack s) by simp-all
hence w /∈ set (stack s)
proof (cases v = hd (stack s))

case True thus ?thesis using hd-stack-no-cycle[OF empty(2 ) - ne] edge by
auto

next
case False with empty .prems ne tl have v /∈ set (stack s) by (fastforce intro:

list .exhaust)
with edge empty .IH show ?thesis by simp

qed
with tl ne show ?case by (fastforce intro: list .exhaust)

next
case (visit s s ′ t x ) hence t /∈ discovered s by simp
hence no-edge: t /∈ Field (edges s) using edges-subset-discovered [OF visit(2 )]

by auto

from visit have v /∈ set (stack s) by simp
moreover with visit have (v ,w) ∈ edges s by (auto simp add : add-edge-def )
ultimately have w /∈ set (stack s) using visit .IH by simp
with visit show ?case
proof (cases w = t)
case True with 〈(v ,w) ∈ edges s〉 have t ∈ Field (edges s) unfolding Field-def

by auto
with no-edge show ?thesis by contradiction

qed simp
qed simp+

lemma no-edge-to-stack-trancl :
assumes constr : dfs-constructable tdfs s
and (v ,w) ∈ (edges s)+
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and v /∈ set (stack s)
shows w /∈ set (stack s)

using assms(2 ,3 ) no-edge-to-stack [OF constr ]
by (induct rule: trancl-induct) simp-all

lemma finished-etrancl-finished :
assumes constr : dfs-constructable tdfs s
and edge: (v ,w) ∈ (edges s)+

and finished : v ∈ finished s
shows w ∈ finished s

proof −
from constr finished have v /∈ set (stack s) by (rule finished-implies-not-stack)
with no-edge-to-stack-trancl [OF constr edge] have w /∈ set (stack s) .

moreover
from edge have w ∈ discovered s using etrancl-is-discovered [OF constr ] by simp
ultimately show ?thesis using discovered-non-stack-implies-finished [OF constr ]

by auto
qed

lemma finish-edge:
assumes constr : dfs-constructable tdfs s
and edge: (v ,w) ∈ edges s
and fin: v ∈ finished s
shows ϕ s v > ϕ s w

proof −
from assms have w ∈ finished s using finished-etrancl-finished [OF constr ] by

force
moreover from fin have v ∈ discovered s using finished-implies-discovered [OF

constr ] by simp
moreover from discover-edge constr edge have δ s v < δ s w .
moreover from edge have w ∈ succs v using edge-is-succs[OF constr ] by simp
ultimately show ?thesis using finished-succs-finish assms by blast

qed

lemma finish-etrancl :
assumes constr : dfs-constructable tdfs s
and reach: (v ,w) ∈ (edges s)+

and fin: v ∈ finished s
shows ϕ s v > ϕ s w

using reach finish-edge[OF constr ] fin finished-etrancl-finished [OF constr ]
by induct fastforce+

lemma completed-finish-etrancl :
assumes fin: dfs-completed tdfs s
and edge: (v ,w) ∈ (edges s)+

shows ϕ s v > ϕ s w
proof −
from fin have Field (edges s) ⊆ finished s using edges-subset-discovered completed-finished-eq-discovered

56



by fastforce
with edge have v ∈ finished s using trancl-subset-Field2 by auto
with fin edge show ?thesis using finish-etrancl by auto

qed

lemma discover-finish-implies-in-etrancl :
assumes dfs-constructable tdfs s
and v ∈ discovered s and w ∈ discovered s
and δ s v < δ s w and v /∈ finished s ∨ (w ∈ finished s ∧ ϕ s w < ϕ s v)
shows (v ,w) ∈ (edges s)+

using assms
proof induction

case (empty s s ′ x ) hence
s ′: discover s = discover s ′ and
f ′: finish s ′ = finish s (x 7→ counter s) and
e ′: (edges s ′)+ = (edges s)+

by simp-all

show ?case
proof (cases v = x )

case True with empty f ′ have v /∈ finished s and finish s ′ w = finish s w
using stack-implies-not-finished [OF empty(2 )] by auto

with empty .prems empty .IH s ′ e ′ show ?thesis by simp
next

case False with f ′ have fv : finish s v = finish s ′ v by simp
show ?thesis
proof (cases w ∈ finished s ′)

case False with empty .IH s ′ e ′ empty .prems fv show ?thesis by fastforce
next

case True note wf ′ = this
thus ?thesis
proof (cases v ∈ finished s ′)

case True with empty(12 ) wf ′ have ∗: ϕ s ′ w < ϕ s ′ v by simp
have w 6= x
proof (rule notI )

assume w = x
with f ′ have ϕ s ′ w = counter s by simp

moreover
from True fv have v ∈ finished s by auto
hence ϕ s v < counter s using finish-lt-counter [OF empty(2 )] by simp
with fv have ϕ s ′ v < counter s by simp
ultimately show False using ∗ by simp

qed
with ∗ fv f ′ wf ′ have w ∈ finished s ∧ ϕ s w < ϕ s v by simp
with empty .prems s ′ e ′ empty .IH show ?thesis by simp

next
case False with empty .prems empty .IH s ′ f ′ e ′ show ?thesis by simp
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qed
qed

qed
next

case (visit s s ′ e x )
hence d ′: discover s ′ = discover s (e 7→ counter s)

and s ′: stack s ′ = e # stack s
and f ′: finish s ′ = finish s
and ne: v 6= w
and e ′: edges s ′ = insert (x , e) (edges s)
by (auto simp add : add-edge-def )

show ?case
proof (cases v = e)

case True with d ′ ne have δ s ′ v = counter s discover s w = discover s ′ w
by auto

moreover
then have w ∈ discovered s using visit .prems by auto
hence δ s w < counter s using discover-lt-counter [OF visit(2 )] by simp

ultimately have False using visit .prems by simp
thus ?thesis ..

next
case False with d ′ have dv : discover s v = discover s ′ v by simp
show ?thesis
proof (cases w = e)

case True with s ′ have w /∈ finished s ′ using stack-implies-not-finished [OF
visit(3 )] by simp

with visit .prems have v ∈ set (stack s ′) using discovered-not-finished-implies-stack [OF
visit(3 )] by simp

then obtain n where n: n < length (stack s ′) stack s ′ ! n = v unfolding
in-set-conv-nth by auto

with False s ′ have n > 0 by (smt nth-Cons ′)
with True e ′ s ′ n show ?thesis using nth-stack-hd-in-etrancl [OF visit(3 ), of

n] by simp
next
case False with d ′ dv f ′ visit .prems visit .IH have (v , w) ∈ (Tree-DFS .edges

s)+ by fastforce
with e ′ trancl-insert show ?thesis by force

qed
qed

qed simp+

lemma not-in-etrancl-discover-finish:
assumes constr : dfs-constructable tdfs s
and ne: v 6= w
and not-in-etrancl : (v ,w) /∈ (edges s)+

shows v /∈ discovered s ∨ w /∈ discovered s ∨ w /∈ finished s ∨ δ s v > δ s w ∨

58



(v ∈ finished s ∧ ϕ s v < ϕ s w)
proof (cases v ∈ V ∧ w ∈ V )
case False hence w /∈ discovered s ∨ v /∈ discovered s using discovered-subset-verts[OF

constr ] by auto
thus ?thesis by simp

next
case True hence verts: v ∈ V w ∈ V by simp-all
from not-in-etrancl show ?thesis

apply (rule contrapos-np)
apply (rule discover-finish-implies-in-etrancl [OF constr , of v w ])
apply (insert discover-neq-discover [OF constr verts ne] finish-neq-finish[OF

constr verts ne])
by force+

qed

lemma both-not-in-etrancl-discover-finish:
assumes constr : dfs-constructable tdfs s
and ne: v 6= w
and not-in-etrancl : (v ,w) /∈ (edges s)+ (w ,v) /∈ (edges s)+

and fin: v ∈ finished s w ∈ finished s
shows δ s w > ϕ s v ∨ ϕ s w < δ s v

proof −
from constr fin have disc: v ∈ discovered s w ∈ discovered s using finished-implies-discovered

by metis+
with constr ne not-in-etrancl not-in-etrancl-discover-finish fin have δ s v > δ s

w ∨ ϕ s v < ϕ s w δ s w > δ s v ∨ ϕ s w < ϕ s v by metis+
thus ?thesis using correct-order constr fin by smt

qed

end

declare edges-def [simp del ]

2.1 The DFS search tree

We now are interested in the search-tree that is built by a DFS. For the
sake of easier proofs, we assume the graph is non-empty, because this case
is trivial and uninteresting.

locale dfs-run = dfs: finite-digraph V E + G : finite-digraph VG EG

for V VG :: ′n set and E EG :: ( ′n × ′n) set +
fixes s :: ( ′n tree, ′n) dfs-sws
assumes E-edges: E = edges s
and E-ne: E 6= {}
and V-discovered : V = discovered s
and completed : dfs-completed tdfs s

begin

abbreviation G-fd-to-graph (GG) where
G-fd-to-graph ≡ G .fd-to-graph
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abbreviation G-fd-reachable (- →G? - [100 ,100 ] 40 ) where
G-fd-reachable ≡ G .fd-reachable

abbreviation G-fd-reachable1 (- →G+ - [100 ,100 ] 40 ) where
G-fd-reachable1 ≡ G .fd-reachable1

abbreviation dfs-fd-to-graph (Gd) where
dfs-fd-to-graph ≡ dfs.fd-to-graph

abbreviation dfs-fd-reachable (- →d? - [100 ,100 ] 40 ) where
dfs-fd-reachable ≡ dfs.fd-reachable

abbreviation dfs-fd-reachable1 (- →d+ - [100 ,100 ] 40 ) where
dfs-fd-reachable1 ≡ dfs.fd-reachable1

lemma dfs-reach-etrancl :
v →d+ w ←→ (v ,w) ∈ (edges s)+

by (metis E-edges dfs.reachable1-trancl)

lemma constructable:
dfs-constructable tdfs s

by (rule dfs-completed-constructable[OF completed ])

lemma dfs-edges-sub:
E ⊆ EG

by (metis constructable edges-subset-E E-edges)

lemma dfs-vertices-sub:
V ⊆ VG

by (metis constructable discovered-subset-verts V-discovered)

lemma verts-eq-edges:
V = Field E

by (metis completed V-discovered completed-edges-eq-discovered E-ne E-edges)

lemma s-discovered [simp, intro]:
x ∈ V =⇒ x ∈ discovered s

using V-discovered
by simp

lemma s-finished [simp,intro]:
x ∈ V =⇒ x ∈ finished s

using completed-finished-eq-discovered [OF completed ] s-discovered
by auto

lemma vert-reach-implies-vert :
assumes x ∈ V
and reach: x →G+ y
shows y ∈ V

proof −
have fin: V = finished s using V-discovered completed-finished-eq-discovered [OF

completed ] by simp
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with 〈x ∈ V 〉 have x ∈ finished s by simp
with reach completed-reach-implies-finished [OF completed ] have y ∈ finished s

by auto
with fin show ?thesis by simp

qed

lemma vert-ewalk-ewalk-verts:
assumes v : x ∈ V
and walk : ewalk x p y
shows set (ewalk-verts x p) ⊆ V

using walk v walk
proof induction

case Base thus ?case by simp
next

case (Cons w1 w2 e es) with ewalk-Cons-iff have ewalk w2 es y by simp
moreover from edge-implies-reach1 [of e] vert-reach-implies-vert Cons have w2
∈ V by simp

ultimately have set (ewalk-verts w2 es) ⊆ V using Cons.IH by simp
with ewalk-verts-conv [OF 〈ewalk w2 es y〉] have snd ‘ set es ⊆ V by simp
with Cons ewalk-verts-conv [OF Cons(5 )] 〈w2 ∈ V 〉 show ?case by simp

qed

lemma vert-ewalk-edge-verts:
assumes v : x ∈ V
and walk : ewalk x p y
and edge: e ∈ set p
shows {fst e, snd e} ⊆ V

proof −
from v walk have set (ewalk-verts x p) ⊆ V using vert-ewalk-ewalk-verts by

simp
with G .ewalk-edge-in-ewalk-verts[OF walk edge] show ?thesis by auto

qed
end

sublocale dfs-run ⊆ finite-subgraph VG V EG E
using dfs-edges-sub verts-eq-edges by unfold-locales

context dfs-run
begin

no-notation disc (δ)
no-notation fin (ϕ)

abbreviation δ ≡ disc s
abbreviation ϕ ≡ fin s

lemma times-relation:
v ∈ V =⇒ δ v < ϕ v

using finish-gt-discover [OF constructable] s-finished
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by force

lemma no-self-reach:
v →d+ w =⇒ v 6= w

using dfs-reach-etrancl no-cycle[OF constructable]
by simp

lemma correct-order :
v ∈ V =⇒ w ∈ V =⇒ δ v < δ w =⇒ ϕ v < δ w ∨ ϕ v > ϕ w

by (metis G .correct-order [OF constructable] s-finished)

lemma reachE [case-names reach-vw reach-wv no-reach, consumes 2 ]:
assumes verts: v ∈ V w ∈ V
obtains

(reach-vw) v →d? w
| (reach-wv) w →d? v
| (no-reach) ¬ v →d? w ¬ w →d? v

proof (cases v →d? w)
case True with reach-vw show ?thesis .

next
case False note no-vw = this
show ?thesis
proof (cases w →d? v)

case True with reach-wv show ?thesis .
next

case False with no-vw no-reach show ?thesis by simp
qed

qed

lemma discover-neq-finish:
v ∈ V =⇒ w ∈ V =⇒ δ v 6= ϕ w

proof −
assume v : v ∈ V and w : w ∈ V
with dfs-vertices-sub have v ∈ VG w ∈ VG by auto
hence discover s v 6= finish s w using discover-neq-finish[OF constructable]

s-discovered [OF v ] by simp
with s-discovered [OF v ] s-finished [OF w ] show δ v 6= ϕ w by auto

qed

lemma discover-neq-discover :
v ∈ V =⇒ w ∈ V =⇒ v 6= w =⇒ δ v 6= δ w

proof −
assume v : v ∈ V and w : w ∈ V and ne: v 6= w
with dfs-vertices-sub have v ∈ VG w ∈ VG by auto
hence discover s v 6= discover s w using discover-neq-discover [OF constructable]

s-discovered [OF v ] ne by simp
with s-discovered [OF v ] s-discovered [OF w ] show δ v 6= δ w by auto

qed
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lemma finish-neq-finish:
v ∈ V =⇒ w ∈ V =⇒ v 6= w =⇒ ϕ v 6= ϕ w

proof −
assume v : v ∈ V and w : w ∈ V and ne: v 6= w
with dfs-vertices-sub have v ∈ VG w ∈ VG by auto
hence finish s v 6= finish s w using finish-neq-finish[OF constructable] s-finished [OF

v ] ne by simp
with s-finished [OF v ] s-finished [OF w ] show ϕ v 6= ϕ w by auto

qed

lemma reach-discover :
v →d+ w =⇒ δ v < δ w

by (metis discover-etrancl [OF constructable] dfs-reach-etrancl)

lemma reach-finish:
v →d+ w =⇒ ϕ v > ϕ w

by (metis completed-finish-etrancl [OF completed ] dfs-reach-etrancl)

lemma no-reach-obtain-split :
assumes nr : ¬ x →d? y
and vert : x ∈ V
and ewalk : G .ewalk x p y
obtains e where e ∈ set p and x →d? fst e and ¬ x →d? snd e

proof −
note vert-ewalk-edge-verts[OF vert ewalk ]
with ewalk nr vert that show ?thesis
proof (induction rule: G .ewalk-induct-rev)

case Base hence False using dfs.self-reachable by simp
thus ?case ..

next
case (Snoc v1 v2 e es)
from Snoc.prems(4 )[of e] Snoc.hyps have v1 ∈ V v2 ∈ V by simp-all
show ?case
proof (cases v1 →d? v2 )

case True with Snoc have ¬ x →d? v1 using dfs.reachable-trans by metis
with Snoc.IH Snoc.prems show ?thesis by auto

next
case False with Snoc show ?thesis
proof (cases x →d? v1 )

case True with Snoc Snoc.prems(3 )[of e] show ?thesis by auto
qed auto

qed
qed

qed

lemma discover-finish-implies-reach:
v ∈ V =⇒ w ∈ V =⇒ δ v < δ w =⇒ ϕ v > ϕ w =⇒ v →d+ w

by (metis discover-finish-implies-in-etrancl [OF constructable] s-discovered s-finished
dfs-reach-etrancl)
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lemma no-reach-discover-finish:
assumes verts: v ∈ V w ∈ V
and no-reach: ¬ v →d? w
shows δ v > δ w ∨ ϕ v < ϕ w

proof −
from assms have ne: v 6= w using dfs.reachable-ewalk [of v w ] dfs.ewalk-empty-iff [of

v w ] by simp
from no-reach show ?thesis
proof (rule contrapos-np)

assume ¬ (δ w < δ v ∨ ϕ v < ϕ w)
with verts ne have v →d+ w using discover-finish-implies-reach[of v w ]

discover-neq-discover finish-neq-finish by smt
thus v →d? w by blast

qed
qed

lemma both-no-reach-discover-finish:
v ∈ V =⇒ w ∈ V =⇒ ¬ v →d? w =⇒ ¬ w →d? v =⇒ δ w > ϕ v ∨ ϕ w < δ v
using no-reach-discover-finish correct-order
by smt

lemma treeish:
assumes reach: v →d+ w
shows ¬ w →d? v

proof (rule notI )
assume w →d? v
with no-self-reach[OF reach] dfs.reachable-neq-reachable1 have w →d+ v by

simp
hence ϕ w > ϕ v using reach-finish by simp
moreover from reach have ϕ v > ϕ w using reach-finish by simp
ultimately show False by simp

qed

lemma discover-finish-impl-disj :
assumes v ∈ V w ∈ V
and δ v < δ w ϕ v < ϕ w
shows ϕ v < δ w

using assms
by (smt correct-order)

lemma disjointI :
assumes verts: v ∈ V w ∈ V
and fini : ϕ v < δ w
shows δ v < δ w and δ v < ϕ w and ϕ v < ϕ w

proof −
from verts have δ v < ϕ v and δ w < ϕ w by (metis times-relation)+
with fini show δ v < δ w and δ v < ϕ w and ϕ v < ϕ w by auto

qed
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We now introduce the well-known notions of white, grey and black nodes.

definition WHITE u x ≡ δ x ≥ u
definition GREY u x ≡ δ x < u ∧ ϕ x ≥ u
definition BLACK u x ≡ ϕ x < u

lemma single-color :
assumes x ∈ V
shows WHITE u x 6= (GREY u x ∨ BLACK u x )
and GREY u x 6= (WHITE u x ∨ BLACK u x )
and BLACK u x 6= (WHITE u x ∨ GREY u x )

proof −
from assms have δ x < ϕ x using finish-gt-discover [OF constructable] s-finished

s-discovered by force
thus WHITE u x 6= (GREY u x ∨ BLACK u x )

and GREY u x 6= (WHITE u x ∨ BLACK u x )
and BLACK u x 6= (WHITE u x ∨ GREY u x )

unfolding WHITE-def GREY-def BLACK-def by auto
qed

lemma grey-impl-reach:
assumes verts: v ∈ V w ∈ V
and grey : GREY u v GREY u w
shows v →d? w ∨ w →d? v

using verts
proof (cases rule: reachE )
case no-reach with verts have δ w > ϕ v ∨ δ v > ϕ w using both-no-reach-discover-finish

by simp
with grey show ?thesis unfolding GREY-def by auto

qed simp-all

The following two notions for disjunction and inclusion are just for express-
ing the parenthesis theorem in better-known ways.

definition DISJ v w ≡ ( ϕ v < δ w ∨ ϕ w < δ v) ∧ ¬ v →d? w ∧ ¬ w →d? v
definition IN v w ≡ ( δ v < δ w ∧ ϕ v > ϕ w) ∧ v →d+ w

lemma reach-eq-IN :
v →d+ w ←→ IN v w

unfolding IN-def
by (force dest : reach-finish reach-discover)

lemma not-reach-eq-DISJ :
v ∈ V =⇒ w ∈ V =⇒ ¬ v →d? w ∧ ¬ w →d? v ←→ DISJ v w

unfolding DISJ-def
by (blast dest : both-no-reach-discover-finish)

theorem parenthesis:
assumes verts: v ∈ V w ∈ V
and v 6= w
shows DISJ v w 6= (IN v w ∨ IN w v)
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and IN v w 6= (DISJ v w ∨ IN w v)
using assms
by (metis not-reach-eq-DISJ reach-eq-IN treeish dfs.reachable-neq-reachable1 dfs.reachable1-reachable)+

2.1.1 White Path Theorem

definition p-white-path where
p-white-path p x y ≡ G .ewalk x p y ∧ (∀ v ∈ set (G .ewalk-verts x p). WHITE

(δ x ) v)

definition white-path where
white-path x y ≡ ∃ p. p-white-path p x y

lemma white-path-iff :
white-path x y ←→ (∃ p. G .ewalk x p y ∧ (∀ v ∈ set (ewalk-verts x p). WHITE

(δ x ) v))
unfolding p-white-path-def white-path-def
by (simp add : ewalk-verts-eq)

lemma reach-impl-white-path:
assumes x →d? y
shows white-path x y

proof (cases x = y)
case True with assms have G .ewalk x [] y using G .ewalk-empty-iff dfs-vertices-sub

dfs.reach-implies-vert by auto
moreover
hence G .ewalk-verts x [] = [x ] by simp
hence ∀ v ∈ set (G .ewalk-verts x []). WHITE (δ x ) v unfolding WHITE-def

by simp
ultimately show ?thesis unfolding white-path-iff by force

next
case False with assms have x →d+ y by auto
with reach-discover have disc: δ x < δ y .

from assms obtain p where ewalk : dfs.ewalk x p y using dfs.reachable-ewalk
by blast

hence dfs.ves p unfolding dfs.ewalk-def by simp

have
∧

v . v ∈ set (dfs.ewalk-verts x p) =⇒ WHITE (δ x ) v
proof −

fix v
assume v ∈ set (dfs.ewalk-verts x p)
with ewalk 〈dfs.ves p〉 have x →d? v
proof induction

case (Base w) thus ?case using dfs.self-reachable by simp
next

case (Cons w1 w2 e es)
show ?case
proof (cases v = w1 )
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case True
from Cons have w1 = fst e by simp
hence w1 ∈ V using Cons(1 ) verts-eq-edges fst-in-Field by force
with True show ?thesis by (simp add : dfs.self-reachable)

next
case False with Cons have w2 →d? v using dfs.ewalk-verts-Cons

dfs.ves-ConsD by simp
moreover

from Cons.hyps have w1 →d? w2 using dfs.succs-reachable[unfolded
dfs.succs-def ] by auto

ultimately show ?thesis using dfs.reachable-trans by metis
qed

qed
thus WHITE (δ x ) v unfolding WHITE-def
proof (cases x=v)

assume x 6= v x →d? v hence x →d+ v by auto
with reach-discover show δ x ≤ δ v by force

qed simp
qed
then show ?thesis unfolding white-path-iff ewalk-verts-eq by (blast intro: ewalk2-implies-ewalk

ewalk)
qed

lemma white-path-impl-reach:
assumes wp: white-path x y
and x ∈ V
shows x →d? y

proof (rule ccontr)
assume no-reach: ¬ x →d? y

from wp obtain p where p: p-white-path p x y unfolding white-path-def by
blast

hence ewalk : ewalk x p y unfolding p-white-path-def by simp
with no-reach 〈x ∈ V 〉 obtain e where

e: e ∈ set p x →d? fst e ¬ x →d? snd e
using no-reach-obtain-split by blast

then obtain u v where u: u = fst e and v : v = snd e by blast
with e have x-u: x →d? u and x-v : ¬ x →d? v by simp-all
hence u-ne-v : u 6= v and x-ne-v : x 6= v using dfs.self-reachable 〈x ∈ V 〉 by

force+

from e ewalk have e ∈ EG unfolding ewalk-conv by auto
with u v have succs: v ∈ G .succs u unfolding succs-def by simp

from e u v ewalk have u ∈ V v ∈ V using vert-ewalk-edge-verts[OF 〈x ∈ V 〉]
by simp-all

note verts = this 〈x ∈ V 〉

from x-u have xu-rel : δ x ≤ δ u ϕ x ≥ ϕ u using reach-discover [of x u]

67



reach-finish[of x u] dfs.reachable-neq-reachable1 by (case-tac [!] x = u) fastforce+

from e v ewalk have v ∈ set (G .ewalk-verts x p) using G .ewalk-edge-in-ewalk-verts
by auto

with p have WHITE (δ x ) v unfolding p-white-path-def by simp
with x-ne-v have xv-rel : δ x < δ v unfolding WHITE-def using discover-neq-discover

verts by force
with correct-order [OF - - this] verts have xv-relf : ϕ x < δ v ∨ ϕ x > ϕ v by

simp

from verts show False
proof (cases rule: reachE )

case reach-vw thus ?thesis by (metis x-u x-v dfs.reachable-trans)
next

case reach-wv with u-ne-v have v →d+ u by auto
hence δ v < δ u and ϕ v > ϕ u using reach-discover reach-finish by simp-all

from xv-relf show ?thesis
proof (rule disjE )

assume ϕ x < δ v with 〈δ v < δ u〉 times-relation[of u] verts have ϕ x <
ϕ u by simp

with xu-rel show False by simp
next
assume ϕ x > ϕ v with xv-rel have x →d+ v using discover-finish-implies-reach

verts by simp
with x-v show False by auto

qed
next

case no-reach with both-no-reach-discover-finish verts have ϕ v < δ u ∨ ϕ u
< δ v by simp

thus ?thesis
proof (rule disjE )

assume ϕ v < δ u with xu-rel xv-rel times-relation verts have δ x < δ v
and ϕ x > ϕ v by force+

with discover-finish-implies-reach verts x-v show False by auto
next

assume ϕ u < δ v with times-relation[of u] verts have δ u < δ v by simp
moreover
with G .completed-finished-succs-finish[OF completed - - succs] s-finished verts

have ϕ v < ϕ u by simp
ultimately have u →? v using discover-finish-implies-reach verts by auto
with x-u x-v dfs.reachable-trans show False by metis

qed
qed

qed

theorem white-path:
x ∈ V =⇒ white-path x y ←→ x →d? y

by (metis reach-impl-white-path white-path-impl-reach)
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end
end
theory Nested-DFS
imports DFS
begin

context finite-digraph
begin

fun check-cycle :: ′n set ⇒ bool ⇒ (bool , ′n) dfs-sws ⇒ ′n ⇒ bool where
check-cycle - True - - = True
| check-cycle sup-st False - e = (e ∈ sup-st) — if e is on the parent (=super) stack,
we have a cycle

definition sub-dfs-invar where
sub-dfs-invar sup-st s ≡ ¬ state s −→ (finished s ∩ sup-st ⊆ {start s} ∧

set (stack s) ∩ sup-st ⊆ {start s} ∧
(start s ∈ sup-st −→ ( (∀ x ∈ finished s. start s

/∈ succs x ) ∧
(∀ n < length (stack s). start s /∈ wl s ! n −→

start s /∈ succs (stack s ! n)))))

lemma sub-dfs-invarI :
[[ ¬ state s; finished s ∩ sup-st ⊆ {start s}; set (stack s) ∩ sup-st ⊆ {start s};

start s ∈ sup-st =⇒ ∀ x ∈ finished s. start s /∈ succs x ; start s ∈ sup-st =⇒ ∀
n < length (stack s). start s /∈ wl s ! n −→ start s /∈ succs (stack s ! n) ]] =⇒
sub-dfs-invar sup-st s
unfolding sub-dfs-invar-def
by blast

definition sub-dfs :: ′n set ⇒ ′n set ⇒ (bool , ′n) dfs-algorithm-invar where
sub-dfs sup-st R = (| dfs-cond = Not , dfs-action = check-cycle sup-st , dfs-post =

λ S - -. S , dfs-remove = λ S s x . x = start s ∧ x ∈ sup-st , dfs-start = λ-. False,
dfs-restrict = R, dfs-invar = sub-dfs-invar sup-st |)

lemma sub-dfs-simps[simp]:
dfs-cond (sub-dfs ss R) S ←→ ¬ S
dfs-action (sub-dfs ss R) = check-cycle ss
dfs-post (sub-dfs ss R) S s x = S
dfs-remove (sub-dfs ss R) S s x ←→ x = start s ∧ x ∈ ss
dfs-start (sub-dfs ss R) x = False
dfs-invar (sub-dfs ss R) = sub-dfs-invar ss
dfs-restrict (sub-dfs ss R) = R

unfolding sub-dfs-def
by (simp-all)

lemma sub-dfs-state-not-next :
dfs-constructable (sub-dfs ss R) s =⇒ state s =⇒ ¬ dfs-next (sub-dfs ss R) s s ′
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unfolding dfs-next-def by auto

lemma sub-dfs-preserves-invar [intro!]:
dfs-preserves-invar (sub-dfs ss R)

proof (rule dfs-preserves-invarI )
fix x s s ′

assume step: dfs-next (sub-dfs ss R) s s ′ and inv-cl :dfs-invar-compl (sub-dfs ss
R) x s

hence inv1 : finished s ∩ ss ⊆ {start s} and
inv2 : set (stack s) ∩ ss ⊆ {start s} and
inv3 : start s ∈ ss −→ (∀ x ∈ finished s. start s /∈ succs x ) and
inv4 : start s ∈ ss −→ (∀ n < length (stack s). start s /∈ wl s ! n −→ start

s /∈ succs (stack s ! n))
unfolding dfs-invar-compl-def by (auto simp add : sub-dfs-invar-def sub-dfs-state-not-next)
note invs = inv1 inv2 inv3 inv4

from step inv-cl have ¬ state s unfolding dfs-invar-compl-def by (auto simp
add : sub-dfs-state-not-next)

have sub-dfs-invar ss s ′

proof (cases state s ′)
case True thus ?thesis by (simp add : sub-dfs-invar-def )

next
case False with step invs show ?thesis
proof (cases rule: dfs-next-cases-elem)

case (remove e x xs w ws) with False have e-neq-s: start s ∈ ss =⇒ e 6=
start s by fastforce

from remove invs False show ?thesis
proof (intro sub-dfs-invarI )

case goal5
with inv4 have inv4 ′: ∀ n < length (stack s). start s /∈ wl s ! n −→ start

s /∈ succs (stack s ! n) by force

from remove have ∗ : stack s ′ = x#xs wl s ′ = (w − {e}) # ws by simp-all
with remove(1 ,2 ) show ?case using inv4 ′

proof (induct rule: stack-wl-remove-induct)
case 0 with e-neq-s goal5 show ?case by auto

qed (auto simp add : remove)
qed simp-all

next
case (restrict e x xs w ws) with inv-cl start-not-restr have e-not-start : e 6=

start s by blast

from restrict invs False show ?thesis
proof (intro sub-dfs-invarI )

case goal5
with inv4 have inv4 ′: ∀ n < length (stack s). start s /∈ wl s ! n −→ start
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s /∈ succs (stack s ! n) by force

from restrict have ∗ : stack s ′ = x#xs wl s ′ = (w − {e}) # ws by simp-all
with restrict(1 ,2 ) show ?case using inv4 ′

proof (induct rule: stack-wl-remove-induct)
case 0 with e-not-start goal5 show ?case by auto

qed (auto simp add : restrict)
qed simp-all

next
case empty with invs show ?thesis unfolding sub-dfs-invar-def by auto

next
case (visit e x xs w ws) with inv-cl start-discovered have e 6= start s by auto
from visit False 〈¬ state s〉 have e /∈ ss by simp

with False visit invs show ?thesis
proof (intro sub-dfs-invarI )

case goal5
with inv4 have inv4 ′: ∀ n < length (stack s). start s /∈ wl s ! n −→ start

s /∈ succs (stack s ! n) by force

from visit have ∗ : stack s ′ = e#x#xs wl s ′ = succs e#(w − {e}) # ws
by simp-all

with visit(1 ,2 ) show ?case
using inv4 ′

proof (induct rule: stack-wl-visit-induct)
case case-1 with 〈e 6= start s〉 visit show ?case by auto

qed (auto simp add : visit)
qed simp-all

qed
qed
thus dfs-invar (sub-dfs ss R) s ′ by simp

qed (simp add : sub-dfs-invar-def )

definition sub-cyclic where sub-cyclic ss s ≡
stack s 6= [] ∧
((hd (stack s) ∈ ss ∧ start s 6= hd (stack s)) ∨ (start s ∈ succs (hd (stack s)) ∧

start s ∈ ss)) ∧
state s

definition sub-cycle where sub-cycle ss R x ≡ ∃ s ∈ dfs-constr-from (sub-dfs ss
R) x . sub-cyclic ss s

lemma state-implies-sub-cyclic:
dfs-constructable (sub-dfs ss R) s =⇒ state s =⇒ sub-cyclic ss s

proof (induction rule: dfs-constructable-induct)
case (visit s s ′ e x ) hence ¬ state s using sub-dfs-state-not-next by force
moreover from visit have check-cycle ss (state s) s e by simp
ultimately have e ∈ ss by simp
moreover from visit start-discovered have e 6= start s by auto
ultimately show ?case using visit unfolding sub-cyclic-def by force
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next
case (remove s s ′ e x ) hence ¬ state s using sub-dfs-state-not-next by force
with remove have e ∈ ss e = start s by auto
moreover from remove have e ∈ succs (hd (stack s)) using wl-subset-succs[OF

remove(2 ), of 0 ] by auto
ultimately show ?case unfolding sub-cyclic-def using remove by simp

qed (simp-all add : sub-dfs-state-not-next sub-cyclic-def )

lemma sub-cycle-not-completed :
assumes constr : s ∈ dfs-constr-from (sub-dfs ss R) x
and sub: x →\R+ v v ∈ ss
shows ¬ dfs-completed (sub-dfs ss R) s

proof (rule notI )
let ?DFS = sub-dfs ss R
assume compl : dfs-completed ?DFS s
hence cond : dfs-cond ?DFS (state s) unfolding dfs-completed-def by simp
moreover from constr-from-invarI [OF constr ] have inv : sub-dfs-invar ss s by

auto
ultimately have nr : finished s ∩ ss ⊆ {start s} start s ∈ ss =⇒ ∀ x∈finished

s. start s /∈ succs x unfolding sub-dfs-invar-def by simp-all

from constr have start : start s = x using constr-from-implies-start by blast

from sub have x-reach: x →\dfs-restrict ?DFS+ v by simp
with compl start completed-start-finished completed-reach-implies-finished have

v ∈ finished s by metis
thus False
proof (cases v = x )

case True with x-reach 〈v ∈ ss〉 〈v ∈ finished s〉 show False
proof induction

case (base y) with base nr start show False by blast
next
case (trans y z ) with completed-reach-implies-finished [OF compl ] 〈v ∈ finished

s〉 True have y ∈ finished s by blast
with trans nr start show False by blast

qed
next

case False
from 〈v ∈ finished s〉 〈v ∈ ss 〉 have v ∈ finished s ∩ ss by auto
with False start nr show False by auto

qed
qed

lemma sub-cycle-generates-sub-cyclic:
assumes reach: x →\R+ v
and sub-cycle: v ∈ ss
obtains s where s ∈ dfs-constr-from (sub-dfs ss R) x sub-cyclic ss s

proof −
let ?DFS = sub-dfs ss R
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from reach have x ∈ V and x /∈ dfs-restrict ?DFS using restricted-start by
auto

with exists-finished [OF - - sub-dfs-preserves-invar ] obtain s where s: s ∈
dfs-constr-from ?DFS x dfs-finished ?DFS s by blast
moreover with sub-cycle-not-completed assms have ¬ dfs-completed ?DFS s by

simp
ultimately have ¬ dfs-cond ?DFS (state s) using finished-is-completed-or-not-cond

by blast
hence state s by simp
with s state-implies-sub-cyclic that constr-from-implies-start show ?thesis by

blast
qed

lemma sub-cycle-get-in-sup-st :
assumes sub-cycle ss R x
obtains v where x →\R+ v v ∈ ss

proof −
from assms obtain s where constr : s ∈ dfs-constr-from (sub-dfs ss R) x and

sub-cyclic ss s unfolding sub-cycle-def by auto
with constr-from-implies-start have sne: stack s 6= [] and ∗: (x 6= hd (stack s) ∧

hd (stack s) ∈ ss) ∨ (x ∈ succs (hd (stack s)) ∧ x ∈ ss) unfolding sub-cyclic-def
by auto

show ?thesis
proof (cases x 6= hd (stack s) ∧ hd (stack s) ∈ ss)

case True with constr-from-restr-reach-stack [OF constr ] sne have x →\R+
hd (stack s) by auto

with True that show ?thesis by blast
next

case False with ∗ have ∗∗:x ∈ succs (hd (stack s)) ∧ x ∈ ss by simp
moreover from constr sne have x /∈ dfs-restrict (sub-dfs ss R) hd (stack s)

/∈ dfs-restrict (sub-dfs ss R)
using constr-from-implies-start stack-not-restricted start-not-restr hd-in-set
by blast+

ultimately have reach: hd (stack s) →\R+ x using succs-restricted by simp
show ?thesis
proof (cases x = hd (stack s))

case True with reach that ∗∗ show ?thesis by simp
next
case False with constr-from-restr-reach-stack [OF constr ] sne have x →\R+

hd (stack s) by auto
with ∗∗ restr-reachable1-trans[OF - reach] that show ?thesis by blast

qed
qed

qed

lemma sub-cycle-iff-in-sup-st :
sub-cycle ss R x ←→ (∃ v . x →\R+ v ∧ v ∈ ss)

proof
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assume sub-cycle ss R x thus ∃ v . x →\R+ v ∧ v ∈ ss by (metis sub-cycle-get-in-sup-st)
next

assume ∃ v . x →\R+ v ∧ v ∈ ss
then guess v ..
then obtain s where sub-cyclic ss s s ∈ dfs-constr-from (sub-dfs ss R) x using

sub-cycle-generates-sub-cyclic by blast
thus sub-cycle ss R x unfolding sub-cycle-def by blast

qed

lemma dfs-fun-sub-dfs-correct :
assumes x ∈ V x /∈ R
shows dfs-fun (sub-dfs ss R) x ≤ SPEC (λs. state s ←→ sub-cycle ss R x )

using assms
proof (intro dfs-fun-pred)

fix s
assume s ∈ dfs-constr-from (sub-dfs ss R) x state s
moreover hence sub-cyclic ss s using state-implies-sub-cyclic by auto
ultimately show sub-cycle ss R x by (auto simp: sub-cycle-def )

next
fix s
assume s ∈ dfs-constr-from (sub-dfs ss R) x

and dfs-completed (sub-dfs ss R) s
and sub-cycle ss R x

hence False by (metis sub-cycle-iff-in-sup-st sub-cycle-not-completed)
thus state s ..

qed (simp-all add : sub-dfs-preserves-invar)

theorem sub-dfs-correct :
assumes x ∈ V x /∈ R
and inres (dfs-fun (sub-dfs ss R) x ) s
shows state s ←→ sub-cycle ss R x

using assms dfs-fun-sub-dfs-correct
by (bestsimp dest !: pwD2 )

theorems sub-dfs-correct-unfolded = sub-dfs-correct [unfolded sub-cycle-iff-in-sup-st ]

corollary sub-dfs-correct-compl :
assumes x ∈ V x /∈ R
and inres (dfs-fun (sub-dfs ss R) x ) s
shows dfs-completed (sub-dfs ss R) s ←→ ¬ sub-cycle ss R x

proof −
from sub-dfs-correct [OF assms] have ¬ dfs-cond (sub-dfs ss R) (state s) ←→

sub-cycle ss R x by simp
moreover from dfs-fun-correct assms have dfs-finished (sub-dfs ss R) s by

(bestsimp dest !: pwD2 )
ultimately show ?thesis by (simp add : dfs-completed-def )

qed

lemmas sub-dfs-correct-compl-unfolded = sub-dfs-correct-compl [unfolded sub-cycle-iff-in-sup-st ]
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lemma RETURN-sub-cycle-correct :
assumes x ∈ V x /∈ R
shows RETURN (sub-cycle ss R x ) = do { s ← dfs-fun (sub-dfs ss R) x ;

RETURN (state s) }
apply (rule pw-eqI )
apply (simp-all add : pw-bind-inres pw-bind-nofail dfs-fun-nofail [OF sub-dfs-preserves-invar ]

assms)
apply (metis assms dfs-fun-nonempty sub-dfs-correct)

done

lemmas RETURN-sub-cycle-correct-unfolded = RETURN-sub-cycle-correct [unfolded
sub-cycle-iff-in-sup-st ]

lemma RETURN-sub-cycle-finished-correct :
assumes x ∈ V x /∈ R
shows RETURN (if sub-cycle ss R x then None else Some {v . v = x ∨ x →\R+

v}) =
do { s ← dfs-fun (sub-dfs ss R) x ; RETURN (if state s then None else

Some (finished s)) } (is ?L = ?R)
proof (rule pw-eqI )

show nofail ?L ←→ nofail ?R by (simp-all add : pw-bind-inres pw-bind-nofail
dfs-fun-nofail [OF sub-dfs-preserves-invar ] assms)
next

let ?DFS = sub-dfs ss R
fix s
from 〈x /∈ R〉 have restr : x /∈ dfs-restrict ?DFS by simp

show inres ?L s ←→ inres ?R s
proof (cases sub-cycle ss R x )

case True
from dfs-fun-nonempty obtain s ′ where s ′: inres (dfs-fun ?DFS x ) s ′ by blast

with s ′ True sub-dfs-correct [OF assms] show ?thesis by (auto simp add :
pw-bind-inres pw-bind-nofail dfs-fun-nofail [OF sub-dfs-preserves-invar ] assms)

next
case False
{

fix s ′

assume inres (dfs-fun ?DFS x ) s ′

moreover with dfs-fun-constructable assms restr have s ′ ∈ dfs-constr-from
?DFS x by blast

moreover hence start s ′ = x using constr-from-implies-start by blast
moreover note assms False
ultimately have dfs-completed ?DFS s ′ finished s ′ = {v . v = x ∨ x →\R+

v}
using completed-finished-eq-reachable[where dfs=?DFS ] sub-dfs-correct-compl

by (simp-all)
} note inres-R-impl = this
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show ?thesis
proof

assume inres ?L s with False have s = Some {v . v = x ∨ x →\R+ v} by
simp

moreover from dfs-fun-nonempty obtain s ′ where s ′: inres (dfs-fun ?DFS
x ) s ′ by blast

moreover note inres-R-impl [OF this]
ultimately show inres ?R s by (auto simp add : pw-bind-inres pw-bind-nofail

dfs-fun-nofail [OF sub-dfs-preserves-invar ] assms dfs-completed-def )
next

assume inres: inres ?R s
hence s = Some {v . v = x ∨ x →\R+ v} using inres-R-impl [unfolded

dfs-completed-def ] by (auto simp add : pw-bind-inres pw-bind-nofail dfs-fun-nofail [OF
sub-dfs-preserves-invar ] assms)

thus inres ?L s using False by simp
qed

qed
qed

lemmas RETURN-sub-cycle-finished-correct-unfolded = RETURN-sub-cycle-finished-correct [unfolded
sub-cycle-iff-in-sup-st ]

end

2.2 Now the grand loop

locale finite-accepting-digraph = finite-digraph V E
for V :: ′n set and E :: ( ′n × ′n) set +
fixes A :: ′n set

begin

definition run-sub-dfs ′ :: ′n set ⇒ ′n set ⇒ ′n ⇒ ′n set option where
run-sub-dfs ′ ss R e ≡ THE b. RETURN b ≤ do { s ← dfs-fun (sub-dfs ss R) e;

RETURN (if state s then None else Some (finished s)) }

lemma run-sub-dfs ′-correct :
assumes e ∈ V and e /∈ R
shows run-sub-dfs ′ ss R e = None ←→ (∃ v . e →\R+ v ∧ v ∈ ss)

unfolding run-sub-dfs ′-def
apply (rule theI2 )
apply (simp-all only : RETURN-sub-cycle-finished-correct-unfolded [OF assms,

symmetric])
apply simp-all

done

lemma run-sub-dfs ′-finished :
assumes e: e ∈ V e /∈ R
and run-sub-dfs ′ ss R e = Some f
shows f = {v . v = e ∨ e →\R+ v}
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proof −
note RETURN-sub-cycle-finished-correct-unfolded [OF e, of ss, symmetric]
also from assms have run-sub-dfs ′ ss R e 6= None by simp
with run-sub-dfs ′-correct [OF e] have RETURN (if ∃ v . e →\R+ v ∧ v ∈ ss

then None else Some {v . v = e ∨ e →\R+ v}) = RETURN (Some {v . v = e ∨
e →\R+ v}) by simp

finally have run-sub-dfs ′ ss R e = (Some {v . v = e ∨ e →\R+ v}) unfolding
run-sub-dfs ′-def by simp

with assms show ?thesis by simp
qed

fun run-sub-dfs :: ((bool × ′n set , ′n) dfs-sws ⇒ ′n set) ⇒ bool × ′n set ⇒ (bool
× ′n set , ′n) dfs-sws ⇒ ′n ⇒ bool × ′n set where

run-sub-dfs M (True, F ) - - = (True, F )
| run-sub-dfs M (False, F ) s e = (if e ∈ A then

case run-sub-dfs ′ (M s) F e of
None ⇒ (True, F ) | Some F ′⇒ (False, F ∪ F ′)

else (False, F ))

lemma run-sub-dfs-not-accpt :
e /∈ A =⇒ run-sub-dfs M S s e = S

by (cases (M , S , s, e) rule: run-sub-dfs.cases) simp-all

abbreviation has-cycle :: (bool × ′n set , ′n) dfs-sws ⇒ bool where
has-cycle x ≡ fst (state x )

lemma run-sub-dfs-casesE [consumes 3 , case-names same cycle no-cycle]:
assumes ¬ fst S
and e ∈ V e /∈ snd S
and same: [[ e /∈ A; run-sub-dfs M S s e = S ]] =⇒ P
and cycle:

∧
v . [[ e ∈ A; run-sub-dfs ′ (M s) (snd S ) e = None; run-sub-dfs M S

s e = (True, snd S ); e →\snd S+ v ; v ∈ M s ]] =⇒ P
and no-cycle:

∧
F ′. [[ e ∈ A; run-sub-dfs ′ (M s) (snd S ) e = Some F ′; run-sub-dfs

M S s e = (False, snd S ∪ F ′); ∀ v . e →\snd S+ v −→ v /∈ M s; F ′ = {v . v =
e ∨ e →\snd S+ v} ]] =⇒ P

shows P
proof (cases e ∈ A)

case False with run-sub-dfs-not-accpt same show ?thesis by simp
next

case True
obtain F where F : F = snd S by auto
then obtain subS where subS : run-sub-dfs ′ (M s) F e = subS by auto
show ?thesis
proof (cases subS )
case None with F subS assms True have run-sub-dfs M S s e = (True, F ) by

(cases (M , S , s, e) rule: run-sub-dfs.cases) simp-all
moreover from assms subS None run-sub-dfs ′-correct [of e F ] F obtain v

where e →\snd S+ v v ∈ M s by auto
ultimately show ?thesis using cycle F True None subS by simp
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next
case (Some F ′) with F subS assms True have run-sub-dfs M S s e = (False,

F ∪ F ′) by (cases (M , S , s, e) rule: run-sub-dfs.cases) simp-all
moreover from assms subS Some run-sub-dfs ′-finished [of e F - F ′] F have

F ′ = {v . v = e ∨ e →\F+ v} by simp
moreover from Some have subS 6= None by simp
with assms subS run-sub-dfs ′-correct [of e F M s] F have ∀ v . e →\F+ v −→

v /∈ M s by simp
ultimately show ?thesis using no-cycle F True Some subS by simp

qed
qed

definition nested-dfs-invar where
nested-dfs-invar s ≡ (¬ has-cycle s −→

(∀ x ∈ A ∩ finished s. ¬ x →+ x ) ∧
set (stack s) ∩ snd (state s) = {} ∧
(∀ x . x /∈ discovered s −→ x /∈ snd (state s)) ∧

(∀ x y . x →+ y −→ x ∈ snd (state s) −→ y ∈ snd (state
s)))

lemma nested-dfs-invarI :
[[ ¬ has-cycle s;
∀ x ∈ A ∩ finished s. ¬ x →+ x ;
set (stack s) ∩ snd (state s) = {};∧

x . x /∈ discovered s =⇒ x /∈ snd (state s);∧
x y . x →+ y =⇒ x ∈ snd (state s) =⇒ y ∈ snd (state s)]] =⇒ nested-dfs-invar

s
unfolding nested-dfs-invar-def
by simp

definition nested-dfs :: ((bool × ′n set , ′n) dfs-sws ⇒ ′n set) ⇒ (bool × ′n set ,
′n) dfs-algorithm-invar where

nested-dfs M = (| dfs-cond = Not ◦ fst , dfs-action = λ S - -. S , dfs-post =
run-sub-dfs M , dfs-remove = λ S - -. S , dfs-start = λx . (False, {}), dfs-restrict =
{}, dfs-invar = nested-dfs-invar |)

lemma nested-dfs-simps[simp]:
dfs-cond (nested-dfs M ) S ←→ ¬ fst S
dfs-post (nested-dfs M ) = run-sub-dfs M
dfs-action (nested-dfs M ) S s x = S
dfs-remove (nested-dfs M ) S s x = S
dfs-start (nested-dfs M ) x = (False, {})
dfs-invar (nested-dfs M ) = nested-dfs-invar
dfs-restrict (nested-dfs M ) = {}

unfolding nested-dfs-def
by simp-all

lemma nested-dfs-has-cycle-not-next :
dfs-constructable (nested-dfs M ) s =⇒ has-cycle s =⇒ ¬ dfs-next (nested-dfs M )
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s s ′

unfolding dfs-next-def by auto

lemma ewalk-verts-vwalk-to-ewalk :
xs 6= [] =⇒ vwalk xs G =⇒ hd xs = u =⇒ ewalk-verts u (vwalk-to-ewalk xs) = xs

unfolding vwalk-to-ewalk-def ewalk-verts-def
proof (induct xs rule: list-nonempty-induct)

case (single x ) thus ?case by simp
next

case (cons x xs) hence xu: x = u by simp
note thms = cons.prems 〈xs 6= []〉

moreover have ∗:
∧

x y . (x ,y) ∈ E =⇒ (SOME e. e ∈ E ∧ e = (x , y)) = (x ,
y) by (intro some-equality) simp-all

moreover from thms have set (vwalk-edges (x#xs)) ⊆ E unfolding vwalk-def
by simp

moreover with thms have set (vwalk-edges xs) ⊆ E by simp
with 〈xs 6= []〉 have map (snd ◦ (λee. SOME e. e ∈ E ∧ e = ee)) (vwalk-edges

xs) = tl xs by (induct xs rule: list-nonempty-induct) (simp-all add : ∗)
ultimately show ?case by simp

qed

lemma vwalk-restr-reachable1-intro:
assumes vwalk xs G
and y ∈ set xs
and set xs ∩ R = {}
and y 6= last xs
shows y →\R+ last xs

proof −
from vwalk-join-split [OF assms(2 )] obtain q r where xs-split : xs = q ⊕ r

joinable q r and r-def : last r = last xs hd r = y by (auto simp add : vwalk-join-last)
with vwalk-join-vwalk2 assms(1 ,3 ) have vwalk r G by simp
with vwalk-has-ewalk r-def have ewalk y (vwalk-to-ewalk r) (last xs) by simp

moreover from xs-split have r 6= [] unfolding joinable-def by simp
with r-def assms(4 ) have tl r 6= [] by (metis hd-rev singleton-rev-conv tl-obtain-elem)
hence vwalk-edges r 6= [] by (induct r) simp-all
hence vwalk-to-ewalk r 6= [] unfolding vwalk-to-ewalk-def by simp

moreover from xs-split have xs = butlast q @ r by (simp add : vwalk-join-def2 )
with assms(3 ) have set r ∩ R = {} by auto

moreover from 〈vwalk r G〉 ewalk-verts-vwalk-to-ewalk r-def 〈r 6= []〉 have
ewalk-verts y (vwalk-to-ewalk r) = r by simp

ultimately show ?thesis by (auto intro!: restr-reachable1I )
qed

lemma nested-dfs-preserves-invar [intro!]:
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assumes M-hd :
∧

s. stack s 6= [] =⇒ hd (stack s) ∈ M s
shows dfs-preserves-invar (nested-dfs M )

proof (rule dfs-preserves-invarI )
fix y s s ′

assume step: dfs-next (nested-dfs M ) s s ′ and inv-cl :dfs-invar-compl (nested-dfs
M ) y s

hence inv : ∀ v ∈ A ∩ finished s. ¬ v →+ v set (stack s) ∩ snd (state s) = {}
∀ x . x /∈ discovered s −→ x /∈ snd (state s)∀ x y . x →+ y −→ x ∈ snd

(state s) −→ y ∈ snd (state s)
unfolding dfs-invar-compl-def using nested-dfs-has-cycle-not-next nested-dfs-invar-def

by simp-all blast+

from inv-cl have constr : dfs-constructable (nested-dfs M ) s by auto
with step have constr ′: dfs-constructable (nested-dfs M ) s ′ using dfs-constructable.step

by blast

have nested-dfs-invar s ′

proof (cases has-cycle s ′)
case True thus ?thesis by (simp add : nested-dfs-invar-def )

next
case False with step inv show ?thesis
proof (cases rule: dfs-next-cases-elem)

case (empty x xs) hence state ′: state s ′ = run-sub-dfs M (state s) s x by
simp

from step constr have no-cycl : ¬ has-cycle s using nested-dfs-has-cycle-not-next
by blast

moreover from inv(1−3 ) empty have x ∈ V x /∈ snd (state s) using
stack-subset-verts[OF constr ] by auto

ultimately show ?thesis
proof (cases rule: run-sub-dfs-casesE [of state s x M s])
case same with inv no-cycl state ′ empty show ?thesis by (intro nested-dfs-invarI )

simp-all
next

case cycle with False state ′ have False by simp
thus ?thesis ..

next
case (no-cycle F ′) with inv(1−3 ) empty M-hd [of s] have no-x-self : ¬ x

→\snd (state s)+ x by auto
have no-x-stack :

∧
y . x →\snd (state s)+ y =⇒ y /∈ set (stack s)

proof (rule notI )
fix y
assume x-y : x →\snd (state s)+ y and y-stack : y ∈ set (stack s)

from x-y no-cycle have y /∈ M s by simp
with M-hd [of s] empty y-stack have y ∈ set (tl (stack s)) by auto
with empty tl-reachable-stack-hd [OF constr ] have y →+ x by simp
moreover from y-stack empty inv(2 ) have y /∈ snd (state s) x /∈ snd

(state s) by auto
ultimately have y →\snd (state s)+ x using reach-impl-restr-reach
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inv(4 ) by blast
with x-y no-x-self restr-reachable1-trans show False by blast

qed

show ?thesis
proof (intro nested-dfs-invarI )

from no-cycle state ′ show ¬ has-cycle s ′ by simp
next

have ¬ x →+ x
proof (rule notI )

assume x →+ x
moreover from empty inv(2 ) have x /∈ snd (state s) by auto

ultimately show False using no-x-self reach-impl-restr-reach inv(4 ) by
blast

qed
with no-cycle inv(1−3 ) empty show ∀ x ∈ A ∩ finished s ′. ¬ x→+x by

auto
next

from inv(2 ) empty have set (stack s ′) ∩ snd (state s) = {} by simp
moreover {

fix y
assume A: y ∈ set (stack s ′) y ∈ F ′

with no-cycle have x = y ∨ x →\snd (state s)+ y by auto
hence False
proof (rule disjE )

case goal1 with A empty stack-distinct [OF constr ] show False by
simp

next
case goal2 with A empty no-x-stack show False by simp

qed
}
hence F ′ ∩ set (stack s ′) = {} by auto

ultimately show set (stack s ′) ∩ snd (state s ′) = {} using no-cycle state ′

by auto
next

fix y
assume ndisc: y /∈ discovered s ′

hence y /∈ F ′

proof (rule contrapos-nn)
assume y ∈ F ′

with no-cycle have y = x ∨ x →\snd (state s)+ y by simp
with empty stack-subset-discovered [OF constr ] ndisc have x →\snd

(state s)+ y by auto
thus y ∈ discovered s ′

proof induction
case base from empty have x ∈ finished s ′ by simp
with finished-implies-succs-discovered [OF constr ′] base show ?case

by auto
next
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case (trans y z ) with no-x-stack have y /∈ set (stack s) by simp
with empty have y /∈ set (stack s ′) by simp
with trans discovered-non-stack-implies-finished [OF constr ′] have y ∈

finished s ′ by simp
with finished-implies-succs-discovered [OF constr ′] trans show ?case

by auto
qed

qed
with ndisc inv(3 ) empty have y /∈ F ′ ∪ snd (state s) by simp
with no-cycle state ′ show y /∈ snd (state s ′) by simp

next
fix y z
assume reach: y →+ z and in-s: y ∈ snd (state s ′)
with no-cycle state ′ have y ∈ snd (state s) ∨ y ∈ F ′ by simp
thus z ∈ snd (state s ′)
proof (rule disjE )
assume y ∈ snd (state s) with reach inv(4 ) no-cycle state ′ show ?thesis

by simp
next
assume A: y ∈ F ′ with reach no-cycle 〈x /∈ snd (state s)〉 have y-notin:

y /∈ snd (state s) using restricted-target by blast
thus ?thesis using no-cycle state ′

proof (cases z ∈ snd (state s))
case False with reach-impl-restr-reach inv(4 ) y-notin reach have y

→\snd (state s)+ z by blast
with A no-cycle restr-reachable1-trans have x →\snd (state s)+ z by

blast
with no-cycle have z ∈ F ′ by blast
with state ′ no-cycle show ?thesis by simp

qed simp
qed

qed
qed

qed (simp-all add : nested-dfs-invar-def )
qed
thus dfs-invar (nested-dfs M ) s ′ by simp

qed (auto simp add : nested-dfs-invar-def )

definition cyclic where cyclic x s ≡ has-cycle s ∧ (∃ v ∈ finished s ∩ A. v →+
v ∧ x →? v)
definition cycle where cycle M x ≡ ∃ s ∈ dfs-constr-from (nested-dfs M ) x . cyclic
x s

lemma has-cycle-implies-cyclic:
dfs-constructable (nested-dfs M ) s =⇒ (

∧
s. stack s 6= [] =⇒ hd (stack s) ∈ M s)

=⇒ (
∧

s. stack s 6= [] =⇒ M s ⊆ set (stack s)) =⇒ has-cycle s =⇒ cyclic (start
s) s
proof (induction rule: dfs-constructable-induct)

case (empty s s ′ x ) hence state ′: state s ′ = run-sub-dfs M (state s) s x by simp

82



from start-reachable-stack [OF empty(2 )] empty have sreach:
∧

x . x ∈ set (stack
s) =⇒ start s ′→? x by auto

from empty have no-cycle: ¬ has-cycle s using nested-dfs-has-cycle-not-next by
force

moreover from empty stack-subset-verts[OF empty(2 )] have x ∈ V by auto

moreover
have inv : nested-dfs-invar s using dfs-constructable-invarI [OF empty(2 )] empty

by auto
with no-cycle have set (stack s) ∩ snd (state s) = {} unfolding nested-dfs-invar-def

by simp
with empty have x /∈ snd (state s) by simp

ultimately show ?case
proof (cases rule: run-sub-dfs-casesE [of state s x M s])

case same with state ′ no-cycle empty .prems have False by simp
thus ?thesis ..

next
case (cycle v)
thus ?thesis
proof (cases v = x )
case True with cycle show ?thesis using empty sreach unfolding cyclic-def

by auto
next

case False from cycle have x →+ v by blast
also from empty have stack s 6= [] by simp
with 〈v ∈ M s〉 empty .prems(2 ) have v ∈ set (stack s) by auto
with 〈v 6= x 〉 empty havev ∈ set (tl (stack s)) by auto
with tl-reachable-stack-hd [OF empty(2 )] empty have v →+ x by simp
finally show ?thesis using empty cycle sreach unfolding cyclic-def by auto

qed
next

case no-cycle with state ′ empty .prems have False by simp
thus ?thesis ..

qed
qed (simp-all add : nested-dfs-has-cycle-not-next cyclic-def )

lemma cycle-not-completed :
assumes M-hd :

∧
s. stack s 6= [] =⇒ hd (stack s) ∈ M s

and reach: x →? v
and cycle: v →+ v
and fin: v ∈ A
and constr : s ∈ dfs-constr-from (nested-dfs M ) x
shows ¬ dfs-completed (nested-dfs M ) s

proof (rule notI )
assume compl : dfs-completed (nested-dfs M ) s
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hence ¬ has-cycle s by (simp add : dfs-completed-def )

from compl no-restrict-finished-eq-reachable[of nested-dfs M s] constr-from-implies-start [OF
constr ] have finished s = {v . x →? v} by simp

hence v ∈ finished s using reach by simp

moreover
from compl M-hd have dfs-invar (nested-dfs M ) s by blast
with 〈¬ has-cycle s〉 have ∀ v ∈ A ∩ finished s. ¬ v →+ v by (simp add :

nested-dfs-invar-def )
with cycle fin have v /∈ finished s by auto

ultimately show False by contradiction
qed

lemma cycle-generates-cyclic:
assumes M-hd :

∧
s. stack s 6= [] =⇒ hd (stack s) ∈ M s and M-sse:

∧
s. stack

s 6= [] =⇒ M s ⊆ set (stack s)
and reach: x →? v
and cycle: v →+ v
and fin: v ∈ A
obtains s where s ∈ dfs-constr-from (nested-dfs M ) x cyclic x s

proof −
from reach have x ∈ V by auto
with exists-finished [OF - - nested-dfs-preserves-invar [OF M-hd ]] obtain s where

s: s ∈ dfs-constr-from (nested-dfs M ) x dfs-finished (nested-dfs M ) s by auto
moreover with cycle-not-completed assms have ¬ dfs-completed (nested-dfs M )

s by simp
ultimately have ¬ dfs-cond (nested-dfs M ) (state s) using finished-is-completed-or-not-cond

by blast
hence has-cycle s by simp
with s has-cycle-implies-cyclic that constr-from-implies-start M-hd M-sse show

?thesis by blast
qed

lemma cycle-get-cycle:
assumes cycle M x
obtains v where x →? v v ∈ A v →+ v

proof −
from assms obtain s where constr : s ∈ dfs-constr-from (nested-dfs M ) x and

cyclic x s unfolding cycle-def by auto
then obtain v where v ∈ finished s ∩ A v →+ v x →? v unfolding cyclic-def

by blast
with that show ?thesis by auto

qed

lemma cycle-iff-cycle:
assumes M-correct :

∧
s. stack s 6= [] =⇒ hd (stack s) ∈ M s

∧
s. stack s 6= []

=⇒ M s ⊆ set (stack s)
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shows cycle M x ←→ (∃ v . x →? v ∧ v ∈ A ∧ v →+ v)
proof
assume cycle M x thus ∃ v . x →? v ∧ v ∈ A ∧ v →+ v by (metis cycle-get-cycle)

next
assume ∃ v . x →? v ∧ v ∈ A ∧ v →+ v
then guess v ..
then obtain s where cyclic x s s ∈ dfs-constr-from (nested-dfs M ) x using

cycle-generates-cyclic[OF M-correct ] by blast
thus cycle M x unfolding cycle-def by blast

qed

lemma dfs-fun-nested-dfs-correct :
assumes x ∈ V
and M-correct :

∧
s. stack s 6= [] =⇒ hd (stack s) ∈ M s

∧
s. stack s 6= [] =⇒ M

s ⊆ set (stack s)
shows dfs-fun (nested-dfs M ) x ≤ SPEC (λs. has-cycle s ←→ cycle M x )

using assms
proof (intro dfs-fun-pred)

fix s
assume s ∈ dfs-constr-from (nested-dfs M ) x has-cycle s
moreover hence cyclic x s using has-cycle-implies-cyclic[OF - M-correct ] constr-from-implies-start

by force
ultimately show cycle M x by (auto simp: cycle-def )

next
fix s
assume s ∈ dfs-constr-from (nested-dfs M ) x dfs-completed (nested-dfs M ) s

cycle M x
hence False by (metis cycle-iff-cycle M-correct cycle-not-completed)
thus has-cycle s ..

qed (simp-all add : nested-dfs-preserves-invar)

theorem nested-dfs-correct :
assumes x ∈ V
and

∧
s. stack s 6= [] =⇒ hd (stack s) ∈ M s

∧
s. stack s 6= [] =⇒ M s ⊆ set

(stack s)
and inres (dfs-fun (nested-dfs M ) x ) s
shows has-cycle s ←→ cycle M x

using assms(4 ) dfs-fun-nested-dfs-correct [OF assms(1−3 )]
by (bestsimp dest !: pwD2 )

lemma RETURN-nested-cycle-correct :
assumes x ∈ V
and

∧
s. stack s 6= [] =⇒ hd (stack s) ∈ M s

∧
s. stack s 6= [] =⇒ M s ⊆ set

(stack s)
shows RETURN (cycle M x ) = do { s ← dfs-fun (nested-dfs M ) x ; RETURN

(has-cycle s) }
apply (rule pw-eqI )
apply (simp-all add : pw-bind-inres pw-bind-nofail dfs-fun-nofail [OF nested-dfs-preserves-invar [OF

assms(2 )] assms(1 )])
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apply (metis assms dfs-fun-nonempty nested-dfs-correct)
done

end

2.3 Basic Nested DFS

context finite-accepting-digraph
begin

definition basicM ≡ λs. { hd (stack s) }
definition basic-dfs ≡ nested-dfs basicM

lemmas basic-dfs-simps[simp] = nested-dfs-simps[where M =basicM , folded basic-dfs-def ]

lemma basicM-correct [simp]:
stack s 6= [] =⇒ hd (stack s) ∈ basicM s
stack s 6= [] =⇒ basicM s ⊆ set (stack s)

unfolding basicM-def
by simp-all

lemma basic-dfs-preserves-invar :
dfs-preserves-invar basic-dfs

by (simp add : basic-dfs-def nested-dfs-preserves-invar)

lemma basic-cycle-iff-cycle:
cycle basicM x ←→ (∃ v . x →? v ∧ v ∈ A ∧ v →+ v)

by (simp add : cycle-iff-cycle)

lemma dfs-fun-basic-dfs-correct :
x ∈ V =⇒ dfs-fun basic-dfs x ≤ SPEC (λs. has-cycle s ←→ cycle basicM x )

by (simp add : dfs-fun-nested-dfs-correct basic-dfs-def )

theorem basic-dfs-correct :
x ∈ V =⇒ inres (dfs-fun basic-dfs x ) s =⇒ has-cycle s ←→ cycle basicM x

by (simp add : nested-dfs-correct basic-dfs-def )

theorems basic-dfs-correct-unfolded = basic-dfs-correct [unfolded basic-cycle-iff-cycle]
end

2.4 HPY

context finite-accepting-digraph
begin

definition hpyM ≡ λs. set (stack s)
definition hpy-dfs ≡ nested-dfs hpyM

lemmas hpy-dfs-simps[simp] = nested-dfs-simps[where M =hpyM , folded hpy-dfs-def ]
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lemma hpyM-correct [simp]:
stack s 6= [] =⇒ hd (stack s) ∈ hpyM s
stack s 6= [] =⇒ hpyM s ⊆ set (stack s)

unfolding hpyM-def
by simp-all

lemma hpy-dfs-preserves-invar :
dfs-preserves-invar hpy-dfs

by (simp add : hpy-dfs-def nested-dfs-preserves-invar)

lemma hpy-cycle-iff-cycle:
cycle hpyM x ←→ (∃ v . x →? v ∧ v ∈ A ∧ v →+ v)

by (simp add : cycle-iff-cycle)

lemma dfs-fun-hpy-dfs-correct :
x ∈ V =⇒ dfs-fun hpy-dfs x ≤ SPEC (λs. has-cycle s ←→ cycle hpyM x )

by (simp add : dfs-fun-nested-dfs-correct hpy-dfs-def )

theorem hpy-dfs-correct :
x ∈ V =⇒ inres (dfs-fun hpy-dfs x ) s =⇒ has-cycle s ←→ cycle hpyM x

by (simp add : nested-dfs-correct hpy-dfs-def )

theorems hpy-dfs-correct-unfolded = hpy-dfs-correct [unfolded hpy-cycle-iff-cycle]
end

2.5 Schwoon-Esparza

context finite-accepting-digraph
begin

fun SE-remove where
SE-remove (True, F ) - - = (True, F )
| SE-remove (False, F ) s x = ((x ∈ A ∨ hd (stack s) ∈ A) ∧ x ∈ set (stack s),
F )

definition SE-dfs :: (bool × ′n set , ′n) dfs-algorithm-invar where
SE-dfs = hpy-dfs(| dfs-remove := SE-remove |)

lemma SE-dfs-simps[simp]:
dfs-cond SE-dfs S ←→ ¬ fst S
dfs-post SE-dfs = run-sub-dfs hpyM
dfs-action SE-dfs S s x = S
dfs-remove SE-dfs = SE-remove
dfs-start SE-dfs x = (False, {})
dfs-invar SE-dfs = nested-dfs-invar
dfs-restrict SE-dfs = {}

unfolding SE-dfs-def
by simp-all
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lemma SE-dfs-has-cycle-not-next :
dfs-constructable SE-dfs s =⇒ has-cycle s =⇒ ¬ dfs-next SE-dfs s s ′

unfolding dfs-next-def by auto

lemma SE-to-nested :
s ∈ dfs-constr-from SE-dfs x =⇒ ¬ has-cycle s =⇒ s ∈ dfs-constr-from hpy-dfs x

proof (induction rule: dfs-constr-from.induct)
case start
have dfs-constr-start SE-dfs x = dfs-constr-start hpy-dfs x by (simp add : dfs-constr-start-def )
with start show ?case by (simp add : dfs-constructable.start)

next
case (step s s ′) with SE-dfs-has-cycle-not-next have no: ¬ has-cycle s by blast
with step.IH have constr : s ∈ dfs-constr-from hpy-dfs x .

from step have dfs-cond-compl hpy-dfs s unfolding dfs-next-def dfs-cond-compl-def
by simp

note thms = step(1 ,4 ) no constr this

from step(2 ) have dfs-next hpy-dfs s s ′

proof (cases rule: dfs-next-cases-elem)
case empty thus ?thesis by (simp add : dfs-next-def dfs-step-def dfs-sws.defs

thms)
next

case restrict thus ?thesis by (simp add : dfs-next-def dfs-step-def dfs-sws.defs
thms)

next
case (remove e)
obtain b F where bf : state s = (b,F ) by (cases state s) auto
with remove 〈¬ has-cycle s ′〉 have state s ′ = (b, F ) by (cases b) simp-all
with remove bf show ?thesis by (simp add : dfs-next-def dfs-sws.defs thms

dfs-step-def exI [where x=e])
next

case (visit e) obtain b F where bf : state s = (b,F ) by (cases state s) auto
with visit have state s ′ = (b, F ) by simp

with visit bf show ?thesis by (simp add : dfs-next-def dfs-sws.defs thms
dfs-step-def exI [where x=e])

qed
with constr show ?case by (rule dfs-constr-from.step)

qed

corollary SE-to-nested ′:
dfs-constructable SE-dfs s =⇒ ¬ has-cycle s =⇒ dfs-constructable hpy-dfs s

using SE-to-nested dfs-constructable-constr-from-start dfs-constr-from-constructable
by metis

lemma SE-dfs-preserves-invar [intro]:
dfs-preserves-invar SE-dfs

proof (rule dfs-preserves-invarI )
fix y s s ′
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assume step: dfs-next SE-dfs s s ′ and inv-cl :dfs-invar-compl SE-dfs y s
hence inv : ∀ v ∈ A ∩ finished s. ¬ v →+ v set (stack s) ∩ snd (state s) = {}

∀ x . x /∈ discovered s −→ x /∈ snd (state s)∀ x y . x →+ y −→ x ∈ snd
(state s) −→ y ∈ snd (state s)

unfolding dfs-invar-compl-def using SE-dfs-has-cycle-not-next nested-dfs-invar-def
by simp-all blast+

from inv-cl have constr : s ∈ dfs-constr-from SE-dfs y by auto
with step have constr ′: s ′ ∈ dfs-constr-from SE-dfs y using dfs-constr-from.step

by blast

have nested-dfs-invar s ′

proof (cases has-cycle s ′)
case True thus ?thesis by (simp add : nested-dfs-invar-def )

next
case False with step inv show ?thesis
proof (cases rule: dfs-next-cases-elem)
case (empty x xs) with step have dfs-next hpy-dfs s s ′ unfolding dfs-next-def

dfs-cond-compl-def dfs-step-def by simp
moreover from constr step SE-to-nested have s ∈ dfs-constr-from hpy-dfs y

using SE-dfs-has-cycle-not-next by blast
with inv-cl have dfs-invar-compl hpy-dfs y s unfolding dfs-invar-compl-def

by simp
ultimately have dfs-invar hpy-dfs s ′ using hpy-dfs-preserves-invar by (metis

dfs-preserves-invarE )
thus ?thesis by simp

next
case visit with step inv show ?thesis by (simp add : nested-dfs-invar-def )

next
case restrict with step inv show ?thesis by (simp add : nested-dfs-invar-def )

next
case (remove e) hence snd (SE-remove (state s) s e) = snd (state s) by

(cases state s, cases fst (state s)) simp-all
with remove step inv show ?thesis by (simp add : nested-dfs-invar-def )

qed
qed
thus dfs-invar SE-dfs s ′ by simp

qed (auto simp add : nested-dfs-invar-def )

definition SE-cyclic where SE-cyclic s ≡ has-cycle s ∧ (cyclic (start s) s ∨ (∃
x ∈ set (stack s). x ∈ A ∧ x →+ x ))
definition SE-cycle where SE-cycle x ≡ ∃ s. s ∈ dfs-constr-from SE-dfs x ∧
SE-cyclic s

lemma has-cycle-implies-SE-cyclic:
dfs-constructable SE-dfs s =⇒ has-cycle s =⇒ SE-cyclic s

proof (induction rule: dfs-constructable-induct)
case (empty s s ′) with SE-dfs-has-cycle-not-next have ¬ has-cycle s by blast
with empty SE-to-nested ′ have dfs-constructable hpy-dfs s by simp
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moreover from empty have dfs-next hpy-dfs s s ′ by (simp add : dfs-next-def
dfs-cond-compl-def dfs-step-def )

ultimately have dfs-constructable hpy-dfs s ′ using dfs-constructable.step by
blast

with empty .prems have cyclic (start s ′) s ′ using has-cycle-implies-cyclic[OF -
hpyM-correct , of s ′, folded hpy-dfs-def ] by metis

with empty .prems show ?case unfolding SE-cyclic-def by simp
next

case (remove s s ′ e x ) with SE-dfs-has-cycle-not-next have ¬ has-cycle s by
blast

with remove have e ∈ set (stack s) ∧ (e ∈ A ∨ x ∈ A) by (cases state s, cases
fst (state s)) simp-all

hence e-stack : e ∈ set (stack s) and A: e ∈ A ∨ x ∈ A by simp-all

from remove have e ∈ succs x using wl-subset-succs[OF remove(2 ), of 0 ] by
auto

with succs-reachable have xe: x →+ e by auto

have ∃ y ∈ set (stack s ′). y →+ y ∧ y ∈ A
proof (cases e = x )

case True with xe A remove show ?thesis by auto
next

case False with remove e-stack have e ∈ set (tl (stack s)) by auto
with tl-reachable-stack-hd [OF remove(2 )] remove have ex : e →+ x by auto
from A show ?thesis
proof

assume e ∈ A
moreover note xe ex
moreover from e-stack remove have e ∈ set (stack s ′) by auto
ultimately show ?thesis using reachable1-trans by blast

next
assume x ∈ A
moreover note xe ex
moreover from remove have x ∈ set (stack s ′) by auto
ultimately show ?thesis using reachable1-trans by blast

qed
qed
with remove.prems show ?case unfolding SE-cyclic-def by blast

qed (simp-all add : SE-dfs-has-cycle-not-next SE-cyclic-def )

lemma SE-cycle-not-completed :
assumes reach: x →? v
and cycle: v →+ v
and fin: v ∈ A
and constr : s ∈ dfs-constr-from SE-dfs x
shows ¬ dfs-completed SE-dfs s

proof (rule notI )
assume compl : dfs-completed SE-dfs s
hence ¬ has-cycle s by (simp add : dfs-completed-def )
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from compl no-restrict-finished-eq-reachable[of SE-dfs s] constr-from-implies-start [OF
constr ] have finished s = {v . x →? v} by simp

hence v ∈ finished s using reach by simp

moreover
from compl have dfs-invar SE-dfs s by blast
with 〈¬ has-cycle s〉 have ∀ v ∈ A ∩ finished s. ¬ v →+ v by (simp add :

nested-dfs-invar-def )
with cycle fin have v /∈ finished s by auto

ultimately show False by contradiction
qed

lemma cycle-generates-SE-cyclic:
assumes reach: x →? v
and cycle: v →+ v
and fin: v ∈ A
obtains s where s ∈ dfs-constr-from SE-dfs x SE-cyclic s

proof −
from reach have x ∈ V by auto
with exists-finished [OF - - SE-dfs-preserves-invar ] obtain s where s: s ∈

dfs-constr-from SE-dfs x dfs-finished SE-dfs s by auto
moreover with SE-cycle-not-completed assms have ¬ dfs-completed SE-dfs s

by simp
ultimately have ¬ dfs-cond SE-dfs (state s) using finished-is-completed-or-not-cond

by blast
hence has-cycle s by simp
with s has-cycle-implies-SE-cyclic that show ?thesis by blast

qed

lemma SE-cycle-get-cycle:
assumes SE-cycle x
obtains v where x →? v v ∈ A v →+ v

proof −
from assms obtain s where constr : s ∈ dfs-constr-from SE-dfs x and SE-cyclic

s unfolding SE-cycle-def by auto
show ?thesis
proof (cases cyclic x s)
case True then obtain v where v ∈ finished s ∩ A v →+ v x →? v unfolding

cyclic-def by blast
with that show ?thesis by blast

next
case False
from constr constr-from-implies-start have start : start s = x by blast
with False 〈SE-cyclic s〉 obtain v where v ∈ set (stack s) v ∈ A v →+v

unfolding SE-cyclic-def by auto
with start start-reachable-stack constr that show ?thesis by auto

qed
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qed

lemma SE-cycle-iff-cycle:
SE-cycle x ←→ (∃ v . x →? v ∧ v ∈ A ∧ v →+ v)

proof
assume SE-cycle x thus ∃ v . x →? v ∧ v ∈ A ∧ v →+ v by (metis SE-cycle-get-cycle)

next
assume ∃ v . x →? v ∧ v ∈ A ∧ v →+ v
then guess v ..
then obtain s where SE-cyclic s s ∈ dfs-constr-from SE-dfs x using cycle-generates-SE-cyclic

by blast
thus SE-cycle x unfolding SE-cycle-def by blast

qed

lemma dfs-fun-SE-dfs-correct :
assumes x ∈ V
shows dfs-fun SE-dfs x ≤ SPEC (λs. has-cycle s ←→ SE-cycle x )

using assms
proof (intro dfs-fun-pred)

fix s
assume s ∈ dfs-constr-from SE-dfs x has-cycle s
moreover hence SE-cyclic s using has-cycle-implies-SE-cyclic by force
ultimately show SE-cycle x by (auto simp: SE-cycle-def )

next
fix s
assume s ∈ dfs-constr-from SE-dfs x dfs-completed SE-dfs s SE-cycle x
hence False by (metis SE-cycle-iff-cycle SE-cycle-not-completed)
thus has-cycle s ..

qed (simp-all add : SE-dfs-preserves-invar)

theorem SE-dfs-correct :
assumes x ∈ V
and inres (dfs-fun SE-dfs x ) s
shows has-cycle s ←→ SE-cycle x

using assms dfs-fun-SE-dfs-correct
by (bestsimp dest !: pwD2 )

theorems SE-dfs-correct-unfolded = SE-dfs-correct [unfolded SE-cycle-iff-cycle]

lemma RETURN-SE-cycle-correct :
assumes x ∈ V
shows RETURN (SE-cycle x ) = do { s ← dfs-fun SE-dfs x ; RETURN (has-cycle

s) }
apply (rule pw-eqI )
apply (simp-all add : pw-bind-inres pw-bind-nofail dfs-fun-nofail [OF SE-dfs-preserves-invar

assms])
apply (metis assms dfs-fun-nonempty SE-dfs-correct)

done
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lemmas RETURN-SE-cycle-correct-unfolded = RETURN-SE-cycle-correct [unfolded
SE-cycle-iff-cycle]
end
end

theory Empty-Set
imports

Main
../Libs/Collections/Collections

begin

type-synonym ′a es = unit

abbreviation (input) es-α :: ′a es ⇒ ′a set where es-α x ≡ {}
abbreviation (input) es-empty :: unit ⇒ ′a es where es-empty x ≡ ()
abbreviation (input) es-memb :: ′a ⇒ ′a es ⇒ bool where es-memb es x ≡ False
abbreviation (input) es-isEmpty :: ′a es ⇒ bool where es-isEmpty es ≡ True
abbreviation (input) es-to-list :: ′a es ⇒ ′a list where es-to-list es ≡ []
abbreviation (input) es-invar :: ′a es ⇒ bool where es-invar ≡ λ-. True

interpretation es: set-empty es-α es-invar es-empty by unfold-locales simp-all
interpretation es: set-memb es-α es-invar es-memb by unfold-locales simp
interpretation es: set-isEmpty es-α es-invar es-isEmpty by unfold-locales simp
interpretation es: set-to-list es-α es-invar es-to-list by unfold-locales simp-all
end
theory DFS-Impl
imports

DFS
Empty-Set
../Libs/Collections/Collections
∼∼/src/HOL/Library/Efficient-Nat

begin

type-synonym ( ′a, ′b, ′c) impl-sws = ( ′a × ′b × ′c × ′c × nat × ′b list × ′b list
list)

definition idisc x ≡ let (S , n, d , f , c, st , wll) = x in d
definition ifinish x ≡ let (S , n, d , f , c, st , wll) = x in f
definition istack x ≡ let (S , n, d , f , c, st , wll) = x in st
definition istate x ≡ let (S , n, d , f , c, st , wll) = x in S
definition icounter x ≡ let (S , n, d , f , c, st , wll) = x in c
definition iwll x ≡ let (S , n, d , f , c, st , wll) = x in wll
definition istart x ≡ let (S , n, d , f , c, st , wll) = x in n

lemma iaccess-simps [simp]:
idisc (S , n, d , f , c, st , wll) = d
ifinish (S , n, d , f , c, st , wll) = f
istack (S , n, d , f , c, st , wll) = st
istate (S , n, d , f , c, st , wll) = S
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icounter (S , n, d , f , c, st , wll) = c
iwll (S , n, d , f , c, st , wll) = wll
istart (S , n, d , f , c, st , wll) = n

by (simp-all add : idisc-def ifinish-def istack-def istate-def icounter-def iwll-def istart-def )

record ( ′S , ′n, ′m, ′s) dfs-algorithm-impl =
dfs-impl-cond :: ′S ⇒ bool — the condition to be satisified by the state S to

continue searching from here.
dfs-impl-action :: ′S ⇒ ( ′S , ′n, ′m) impl-sws ⇒ ′n ⇒ ′S — modifies the state for

the current node BEFORE visiting the successors.
dfs-impl-post :: ′S ⇒ ( ′S , ′n, ′m) impl-sws ⇒ ′n ⇒ ′S — modifies the state for

the current node AFTER having visited the successors (i.e. during backtracking).
dfs-impl-remove :: ′S ⇒ ( ′S , ′n, ′m) impl-sws ⇒ ′n ⇒ ′S — modifies the state if

a node has already been visited and is removed from the stack
dfs-impl-start :: ′n ⇒ ′S — the starting state
dfs-impl-restrict :: ′s — the set of restricted nodes
dfs-impl-invar :: ( ′S , ′n, ′m) impl-sws ⇒ bool

definition dfs-impl-state-invar where
dfs-impl-state-invar P ≡ λs. P (istate s)

locale DFS-Impl ′ =
fixes dfs :: ( ′Sa, ′n, ′morea) dfs-algorithm-invar-scheme
and impl-dfs :: ( ′S , ′n, ′m, ′s, ′more) dfs-algorithm-impl-scheme

locale sws-impl = g : finite-digraph V E +
map: StdMap mops

for mops :: ( ′n, nat , ′m, ′X ) map-ops-scheme
and V :: ′n set and E :: ( ′n × ′n) set +
fixes ασ :: ′S ⇒ ′Sa

begin
definition impl-sws-α :: ( ′S , ′n, ′m) impl-sws ⇒ ( ′Sa, ′n) dfs-sws where

impl-sws-α x = (let (S , n, d , f , c, st , wll) = x in dfs-sws.make n st (map set
wll) (map.α d) (α f ) c (ασ S ))

lemma impl-sws-α-simps [simp]:
stack (impl-sws-α (S , n, d , f , c, st , wll)) = st
start (impl-sws-α (S , n, d , f , c, st , wll)) = n
discover (impl-sws-α (S , n, d , f , c, st , wll)) = map.α d
finish (impl-sws-α (S , n, d , f , c, st , wll)) = map.α f
counter (impl-sws-α (S , n, d , f , c, st , wll)) = c
state (impl-sws-α (S , n, d , f , c, st , wll)) = ασ S
wl (impl-sws-α (S , n, d , f , c, st , wll)) = map set wll

by (simp-all add : impl-sws-α-def dfs-sws.defs)

lemma impl-sws-α-conv [simp]:
stack (impl-sws-α x ) = istack x
start (impl-sws-α x ) = istart x
discover (impl-sws-α x ) = map.α (idisc x )
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finish (impl-sws-α x ) = map.α (ifinish x )
state (impl-sws-α x ) = ασ (istate x )
counter (impl-sws-α x ) = icounter x
wl (impl-sws-α x ) = map set (iwll x )

by (cases x , simp)+
end

locale DFS-Impl = DFS-Impl ′ dfs impl-dfs +
sws-impl mops V E ασ +
set : set-memb setα setinvar setmemb

for dfs :: ( ′Sa, ′n, ′morea) dfs-algorithm-invar-scheme
and impl-dfs :: ( ′S , ′n, ′m, ′s, ′more) dfs-algorithm-impl-scheme
and mops :: ( ′n, nat , ′m, ′X ) map-ops-scheme
and setα :: ′s ⇒ ′n set and setinvar :: ′s ⇒ bool and setmemb :: ′n ⇒ ′s ⇒

bool
and V :: ′n set and E :: ( ′n × ′n) set
and ασ :: ′S ⇒ ′Sa +
fixes γsuccs :: ′n ⇒ ′n list
assumes succs-correct : set (γsuccs y) = succs y
and succs-distinct : distinct (γsuccs y)

begin

fun dfs-step-impl ′ :: ( ′S , ′n, ′m) impl-sws ⇒ ( ′S , ′n, ′m) impl-sws ⇒ ( ′S , ′n, ′m) impl-sws
where
dfs-step-impl ′ s (S , n, d , f , c, (x#xs), ([]#ys)) = (dfs-impl-post impl-dfs S s x ,

n, d , map.update x c f , c + 1 , xs, ys)
| dfs-step-impl ′ s (S , n, d , f , c, (x#xs), ((z#zs)#ys)) = (if setmemb z (dfs-impl-restrict
impl-dfs) then (S , n, d , f , c, (x#xs), (zs#ys))

else if map.lookup z d 6= None then
(dfs-impl-remove impl-dfs S s z , n, d , f , c, x # xs, zs # ys)

else (dfs-impl-action impl-dfs S s z ,
n, map.update z c d , f , c + 1 , z # x # xs, (γsuccs z ) # zs # ys))
| dfs-step-impl ′ s (S , n, d , f , c, [], []) = s

abbreviation dfs-step-impl s ≡ dfs-step-impl ′ s s

definition dfs-cond-impl :: ( ′S , ′n, ′m) impl-sws ⇒ bool where
dfs-cond-impl s ≡ istack s 6= [] ∧ iwll s 6= [] ∧ dfs-impl-cond impl-dfs (istate s)

definition dfs-start-impl :: ′n ⇒ ( ′S , ′n, ′m) impl-sws where
dfs-start-impl x = (dfs-impl-start impl-dfs x , x , map.sng x 0 , map.empty (),

(1 ::nat), [x ], [γsuccs x ])

definition impl-sws-invar :: ( ′S , ′n, ′m) impl-sws ⇒ bool where
impl-sws-invar s ≡

dfs-constructable dfs (impl-sws-α s) ∧
map.invar (ifinish s) ∧ map.invar (idisc s) ∧
(∀ w ∈ set (iwll s). distinct w ∧ set w ⊆ V )
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lemma impl-sws-invarI :
[[ dfs-constructable dfs (impl-sws-α s);

map.invar (ifinish s); map.invar (idisc s);∧
w . w ∈ set (iwll s) =⇒ distinct w ∧ set w ⊆ V ]] =⇒ impl-sws-invar s

unfolding impl-sws-invar-def
by metis

lemma impl-sws-invarE :
[[ impl-sws-invar s;

[[ dfs-constructable dfs (impl-sws-α s);
map.invar (ifinish s); map.invar (idisc s);∧

w . w ∈ set (iwll s) =⇒ distinct w ∧ set w ⊆ V ]] =⇒ P ]]
=⇒ P

unfolding impl-sws-invar-def
by metis

lemma impl-sws-invar-constructable:
impl-sws-invar s =⇒ dfs-constructable dfs (impl-sws-α s)

by (metis impl-sws-invarE )

lemmas impl-sws-invar-constructableE [elim] = impl-sws-invar-constructable[elim-format ]

lemma impl-sws-invar-mapinvars:
impl-sws-invar s =⇒ map.invar (idisc s)
impl-sws-invar s =⇒ map.invar (ifinish s)

unfolding impl-sws-invar-def
by metis+

lemma impl-sws-invar-dfs-invar :
dfs-preserves-invar dfs =⇒ impl-sws-invar s =⇒ dfs-invar dfs (impl-sws-α s)

by auto

definition impl-preserves-invar where
impl-preserves-invar ≡ (∀ x ∈ V . x /∈ setα (dfs-impl-restrict impl-dfs) ∧ impl-sws-invar

(dfs-start-impl x ) −→
dfs-impl-invar impl-dfs (dfs-start-impl x )) ∧

(∀ s s ′. impl-sws-invar s ∧ dfs-cond-impl s ∧ s ′ = dfs-step-impl
s ∧ dfs-impl-invar impl-dfs s −→

dfs-impl-invar impl-dfs s ′)

lemma impl-preserves-invar-start :
impl-preserves-invar =⇒ x ∈ V =⇒ x /∈ setα (dfs-impl-restrict impl-dfs) =⇒

impl-sws-invar (dfs-start-impl x ) =⇒ dfs-impl-invar impl-dfs (dfs-start-impl x )
by (simp add : impl-preserves-invar-def )

lemma impl-preserves-invar-step:
impl-preserves-invar =⇒ impl-sws-invar s =⇒ dfs-cond-impl s =⇒ dfs-impl-invar

impl-dfs s =⇒ s ′ = dfs-step-impl s =⇒ dfs-impl-invar impl-dfs s ′

unfolding impl-preserves-invar-def
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by blast

lemma impl-preserves-invarI :
[[
∧

v . [[v ∈ V ; v /∈ setα (dfs-impl-restrict impl-dfs); impl-sws-invar (dfs-start-impl
v)]] =⇒ dfs-impl-invar impl-dfs (dfs-start-impl v);∧

s s ′. [[ impl-sws-invar s; dfs-cond-impl s; dfs-impl-invar impl-dfs s; s ′ =
dfs-step-impl s ]] =⇒ dfs-impl-invar impl-dfs s ′

]] =⇒ impl-preserves-invar
unfolding impl-preserves-invar-def
by blast

lemma state-impl-preserves-invarI :
assumes SI : dfs-impl-invar impl-dfs = dfs-impl-state-invar P
and start :

∧
x . [[ x ∈ V ; x /∈ setα (dfs-impl-restrict impl-dfs) ]] =⇒ P (dfs-impl-start

impl-dfs x )
and post :

∧
s x . [[x ∈ set (istack s); P (istate s); impl-sws-invar s; dfs-cond-impl

s]] =⇒ P (dfs-impl-post impl-dfs (istate s) s x )
and remove:

∧
s x . [[x ∈ set (hd (iwll s)); map.lookup x (idisc s) 6= None;

P (istate s); impl-sws-invar s; dfs-cond-impl s]] =⇒ P (dfs-impl-remove impl-dfs
(istate s) s x )
and action:

∧
s x . [[x ∈ set (hd (iwll s)); map.lookup x (idisc s) = None; P (istate

s); impl-sws-invar s; dfs-cond-impl s]] =⇒ P (dfs-impl-action impl-dfs (istate s) s
x )

shows impl-preserves-invar
proof (rule impl-preserves-invarI )

case (goal1 v) with SI start show ?case unfolding dfs-impl-state-invar-def
dfs-start-impl-def by simp
next

note SIS [simp] = SI dfs-impl-state-invar-def
case (goal2 s s ′) hence inv : P (istate s) and length (istack s) = length (iwll s)

using length-wl-eq-stack [OF impl-sws-invar-constructable] by simp-all
with goal2 (4 ,1−3 ) show ?case
proof (induction s rule: dfs-step-impl ′.induct)

case (goal1 s ′) hence x ∈ set (x#xs) by simp
with post [OF - goal1 (5 )] goal1 show ?case by simp

next
case (goal2 s ′) hence z ∈ set (hd ((z#zs)#ys)) by auto
with goal2 remove[OF - - goal2 (5 )] action[OF - - goal2 (5 )] show ?case by

simp
qed simp-all

qed
end

locale DFS-Impl-correct = DFS-Impl dfs impl-dfs mops setα setinvar setmemb V
E ασ γsuccs

for dfs :: ( ′Sa, ′n, ′morea) dfs-algorithm-invar-scheme
and impl-dfs :: ( ′S , ′n, ′m, ′s, ′more) dfs-algorithm-impl-scheme
and mops :: ( ′n, nat , ′m, ′X ) map-ops-scheme
and setα :: ′s ⇒ ′n set and setinvar :: ′s ⇒ bool and setmemb :: ′n ⇒ ′s ⇒
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bool
and V :: ′n set and E :: ( ′n × ′n) set
and ασ :: ′S ⇒ ′Sa
and γsuccs :: ′n ⇒ ′n list+
assumes action-correct : [[x ∈ set (hd (iwll s)); map.lookup x (idisc s) = None;

dfs-impl-invar impl-dfs s; impl-sws-invar s; dfs-cond-impl s ]] =⇒ ασ (dfs-impl-action
impl-dfs (istate s) s x ) = dfs-action dfs (ασ (istate s)) (impl-sws-α s) x

and post-correct : [[x ∈ set (istack s); dfs-impl-invar impl-dfs s; impl-sws-invar s;
dfs-cond-impl s ]] =⇒ ασ (dfs-impl-post impl-dfs (istate s) s x ) = dfs-post dfs (ασ
(istate s)) (impl-sws-α s) x

and remove-correct : [[x ∈ set (hd (iwll s)); map.lookup x (idisc s) 6= None;
dfs-impl-invar impl-dfs s; impl-sws-invar s; dfs-cond-impl s ]] =⇒ ασ (dfs-impl-remove
impl-dfs (istate s) s x ) = dfs-remove dfs (ασ (istate s)) (impl-sws-α s) x
and start-correct : [[x ∈ V ; x /∈ setα (dfs-impl-restrict impl-dfs)]] =⇒ ασ (dfs-impl-start

impl-dfs x ) = dfs-start dfs x
and cond-correct : dfs-impl-cond impl-dfs S = dfs-cond dfs (ασ S )
and restr-correct : setα (dfs-impl-restrict impl-dfs) = dfs-restrict dfs
and restr-invar : setinvar (dfs-impl-restrict impl-dfs)
and impl-preserves-invar : impl-preserves-invar

begin

lemma dfs-cond-impl-correct :
dfs-cond-impl s = dfs-cond-compl dfs (impl-sws-α s)

unfolding dfs-cond-impl-def dfs-cond-compl-def
by (simp add : cond-correct)

lemma dfs-cond-impl-conv :
dfs-cond-impl (S , n, d ,f ,c, st , wll) ≡ st 6= [] ∧ wll 6= [] ∧ dfs-impl-cond impl-dfs

S
unfolding dfs-cond-impl-def istate-def istack-def iwll-def
by simp

lemma dfs-start-impl-correct :
x ∈ V =⇒ x /∈ setα (dfs-impl-restrict impl-dfs) =⇒ impl-sws-α (dfs-start-impl

x ) = dfs-constr-start dfs x
unfolding dfs-start-impl-def dfs-constr-start-def
by (simp add : start-correct map.correct succs-correct impl-preserves-invar-start [OF
impl-preserves-invar ])

lemma dfs-start-impl-constructable:
assumes x ∈ V
and x /∈ setα (dfs-impl-restrict impl-dfs)
shows dfs-constructable dfs (impl-sws-α (dfs-start-impl x ))

proof −
from assms(2 ) have x /∈ dfs-restrict dfs using restr-correct by simp
with assms dfs-start-impl-correct dfs-constructable.start show ?thesis by simp

qed

lemma dfs-step-impl-correct :
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assumes invars: impl-sws-invar s dfs-impl-invar impl-dfs s dfs-cond-impl s
and s ′ = dfs-step-impl s
shows impl-sws-α s ′ ∈ dfs-step dfs (impl-sws-α s)

proof −
from invars length-wl-eq-stack have length (istack s) = length (iwll s) by force
moreover from invars have istack s 6= [] unfolding dfs-cond-impl-def by simp
moreover note assms
ultimately show ?thesis
proof (induction (s) rule: dfs-step-impl ′.induct)

case (goal1 s ′) let ?s = (S , n, d , f , c, x # xs, [] # ys) let ?R = impl-sws-α
?s

from goal1 invars have inf :invar f and inv : dfs-impl-invar impl-dfs ?s un-
folding impl-sws-invar-def by auto

from goal1 have dfs-step dfs ?R = {dfs-sws.make n xs (map set ys) (map.α
d) ((map.α f )(x 7→ c)) (Suc c) (dfs-post dfs (ασ S ) ?R x )}

using dfs-step-simps(2 )[of ?R x xs dfs] by (simp add : dfs-sws.defs impl-sws-α-def )
also from goal1 post-correct [OF - inv ] update-correct [OF inf ] have ... =

{dfs-sws.make n xs (map set ys) (α d) (map.α (update x c f )) (Suc c) (ασ (dfs-impl-post
impl-dfs S ?s x ))}

by (simp add : dfs-sws.defs)
also from goal1 have ... = { impl-sws-α (dfs-step-impl ?s) } by (simp add :

impl-sws-α-def )
finally show ?case by (simp add : goal1 )

next
case (goal2 s ′) let ?s = (S , n, d , f , c, x # xs, (z # zs) # ys) let ?R =

impl-sws-α ?s
from goal2 have ind : invar d and inv : dfs-impl-invar impl-dfs ?s unfolding

impl-sws-invar-def by auto
from goal2 (3 ) wl-subset-succs[where n= 0 ] succs-correct have z-in: z ∈ set

(γsuccs x ) by fastforce

from goal2 have
∧

w . w ∈ set (iwll ?s) =⇒ distinct w (z#zs) ∈ set (iwll ?s)
unfolding impl-sws-invar-def by force+

hence z-dist : distinct (z#zs) .

show ?case
proof (cases setmemb z (dfs-impl-restrict impl-dfs))
case True with restr-correct restr-invar set .memb-correct have z ∈ dfs-restrict

dfs by blast
with goal2 z-dist have dfs-sws.make n (x#xs) (map set (zs#ys)) (α d) (α

f ) c (ασ S ) ∈ dfs-step dfs ?R
using dfs-step-simps(3 )[of ?R x xs dfs]
apply simp
apply (rule-tac x=z in exI )
by simp

with goal2 True show ?thesis by (simp add : impl-sws-α-def )
next
case False with restr-correct restr-invar set .memb-correct have z-not-R: z /∈
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dfs-restrict dfs by blast
show ?thesis
proof (cases lookup z d)

case None with z-in have set (γsuccs x ) − {v . lookup v d 6= None} 6= {}
by auto

with ind None succs-correct z-in have z /∈ dom (α d) and succs x − dom
(α d) 6= {} and z ∈ succs x by (auto simp add : correct)

with goal2 z-not-R None z-dist have dfs-sws.make n (z#x#xs) (map set
(γsuccs z#zs#ys)) ((α d)(z 7→ c)) (α f ) (Suc c) (dfs-action dfs (ασ S ) ?R z ) ∈
dfs-step dfs ?R

using dfs-step-simps(3 )[of ?R x xs dfs]
apply simp
apply (rule-tac x=z in exI )
by (auto simp add : succs-correct)
with goal2 None action-correct [OF - - inv ] update-correct [OF ind ] have

dfs-sws.make n (z#x#xs) (map set (γsuccs z#zs#ys)) (α (map.update z c d)) (α
f ) (Suc c) (ασ (dfs-impl-action impl-dfs S ?s z )) ∈ dfs-step dfs ?R

by (simp add : dfs-sws.defs)
with None False goal2 show ?thesis by (simp add : impl-sws-α-def )

next
case (Some e) with ind have z ∈ dom (α d) by (auto simp add : correct)

with goal2 Some z-not-R z-dist have dfs-sws.make n (x#xs) (map set
(zs#ys)) (α d) (α f ) c (dfs-remove dfs (ασ S ) ?R z ) ∈ dfs-step dfs ?R

using dfs-step-simps(3 )[of ?R x xs dfs]
apply simp
apply (rule-tac x=z in exI )
by simp

with remove-correct [OF - - inv ] Some False goal2 show ?thesis by (auto
simp add : impl-sws-α-def )

qed
qed

qed simp-all
qed

lemma dfs-step-impl-dfs-next :
assumes invar : impl-sws-invar s dfs-impl-invar impl-dfs s
and cond : dfs-cond-impl s
shows dfs-next dfs (impl-sws-α s) (impl-sws-α (dfs-step-impl s))

proof −
from cond dfs-cond-impl-correct have dfs-cond-compl dfs (impl-sws-α s) by simp
moreover from cond invar have impl-sws-α (dfs-step-impl s) ∈ dfs-step dfs

(impl-sws-α s) by (simp add : dfs-step-impl-correct)
ultimately show ?thesis unfolding dfs-next-def by simp

qed

lemma dfs-impl-constructable:
assumes impl-sws-invar s dfs-impl-invar impl-dfs s
and constr : dfs-constructable dfs (impl-sws-α s)
and dfs-cond-impl s
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shows dfs-constructable dfs (impl-sws-α (dfs-step-impl s))
proof −
from assms have dfs-next dfs (impl-sws-α s) (impl-sws-α (dfs-step-impl s)) using

dfs-step-impl-dfs-next by blast
with constr show ?thesis using dfs-constructable.step by metis

qed

lemma dfs-step-impl-invars:
assumes invars: impl-sws-invar s dfs-impl-invar impl-dfs s dfs-cond-impl s
and step: s ′ = dfs-step-impl s
shows impl-sws-invar s ′

proof −
from invars step dfs-impl-constructable have dfs-constructable dfs (impl-sws-α

s ′) by blast
moreover from invars length-wl-eq-stack have length (istack s) = length (iwll

s) by force
moreover from invars have istack s 6= [] unfolding dfs-cond-impl-def by simp
moreover note assms
ultimately show ?thesis
proof (induction s rule: dfs-step-impl ′.induct)

case (goal1 s ′) with goal1 [unfolded impl-sws-invar-def ] show ?case by (intro
impl-sws-invarI ) (simp-all add : map.correct)

next
case (goal2 s ′)
note g2 = goal2 [unfolded impl-sws-invar-def ]

show ?case
proof (cases setmemb z (dfs-impl-restrict impl-dfs) ∨ lookup z d 6= None)

case True with g2 show ?thesis
apply (intro impl-sws-invarI )
apply (case-tac [!] setmemb z (dfs-impl-restrict impl-dfs))
apply auto
done

next
case False hence membFalse: ¬ setmemb z (dfs-impl-restrict impl-dfs)

map.lookup z d = None by simp-all
with g2 show ?thesis
proof (intro impl-sws-invarI )

from g2 have ∗:
∧

w . w ∈ set ((z#zs)#ys) =⇒ distinct w ∧ set w ⊆ V
by auto

moreover
from ∗[of z#zs] distinct-tl have distinct zs by simp
moreover from succs-correct have set (γsuccs z ) ⊆ V using succs-in-V

by auto
ultimately have

∧
w . w ∈ set (γsuccs z#zs#ys) =⇒ distinct w ∧ set

w ⊆ V by (metis succs-distinct ListMem-iff elem mem-def predicate1D set-ConsD
set-subset-Cons subset-trans)

thus
∧

w . w ∈ set (iwll s ′) =⇒ distinct w ∧ set w ⊆ V using g2 membFalse
by auto
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qed (simp-all add : map.correct)
qed

qed simp-all
qed

definition dfs-fun-impl :: ′n ⇒ (( ′S , ′n, ′m) impl-sws) nres where
dfs-fun-impl x ≡WHILET dfs-cond-impl (λs. RETURN (dfs-step-impl s)) (dfs-start-impl

x )

definition dfs-impl-build-rel where
dfs-impl-build-rel ≡ br impl-sws-α (λs. impl-sws-invar s ∧ dfs-impl-invar impl-dfs

s)

lemma dfs-fun-impl-refine:
assumes x ∈ V x /∈ dfs-restrict dfs
shows dfs-fun-impl x ≤ ⇓ dfs-impl-build-rel (dfs-fun dfs x )

unfolding dfs-fun-impl-def dfs-fun-def dfs-impl-build-rel-def
apply (refine-rcg)

apply (simp add : dfs-start-impl-correct [OF assms(1 )] restr-correct assms)
apply (rule context-conjI )

apply (intro impl-sws-invarI )
apply (simp add : dfs-start-impl-constructable restr-correct assms)

apply (simp-all add : dfs-start-impl-def correct succs-distinct assms succs-correct
succs-in-V )[3 ]

apply (simp add : impl-preserves-invar-start [OF impl-preserves-invar ] assms
restr-correct)

apply (simp add : dfs-cond-impl-correct)
apply (rule SPEC-refine-sv)

apply (rule br-single-valued)
apply (simp add : dfs-step-impl-dfs-next)
apply (rule conjI )

apply (blast dest : dfs-step-impl-invars)
apply (blast dest : impl-preserves-invar-step[OF impl-preserves-invar ])

done

theorem dfs-fun-impl-correct :
assumes dfs-preserves-invar dfs x ∈ V x /∈ dfs-restrict dfs
shows dfs-fun-impl x ≤ ⇓ dfs-impl-build-rel (SPEC (λs. s ∈ dfs-constr-from dfs

x ∧ dfs-finished dfs s))
proof −

note dfs-fun-impl-refine[OF assms(2−)]
also note dfs-fun-correct [OF assms]
finally show ?thesis .

qed

lemma dfs-fun-impl-nofail [refine-pw-simps]:
assumes dfs-preserves-invar dfs x ∈ V x /∈ dfs-restrict dfs
shows nofail (dfs-fun-impl x )

proof −
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note dfs-fun-nofail [OF assms]
also note pw-conc-nofail [symmetric]
finally show ?thesis by (blast intro: pwD dfs-fun-impl-refine[OF assms(2−)])

qed

schematic-lemma dfs-code-aux :
RETURN ?dfs-code ≤ dfs-fun-impl x

unfolding dfs-fun-impl-def
by refine-transfer

definition dfs-code :: ′n ⇒ ( ′S , ′n, ′m) impl-sws where
dfs-code x ≡ while dfs-cond-impl dfs-step-impl (dfs-start-impl x )

lemmas dfs-code-refine = dfs-code-aux [folded dfs-code-def ]

theorem dfs-code-correct :
[[ dfs-preserves-invar dfs; x ∈ V ; x /∈ dfs-restrict dfs; s = dfs-code x ]] =⇒

impl-sws-α s ∈ dfs-constr-from dfs x ∧ dfs-finished dfs (impl-sws-α s) ∧ impl-sws-invar
s ∧ dfs-impl-invar impl-dfs s
using order-trans[OF dfs-code-refine dfs-fun-impl-correct , of x ]
unfolding dfs-impl-build-rel-def
by (auto elim!: RETURN-ref-SPECD)

corollary dfs-code-constructable:
[[ dfs-preserves-invar dfs; x ∈ V ; x /∈ dfs-restrict dfs ]] =⇒ impl-sws-α (dfs-code

x ) ∈ dfs-constr-from dfs x
by (metis dfs-code-correct)

corollary dfs-code-preserves-invar :
[[ dfs-preserves-invar dfs; x ∈ V ; x /∈ dfs-restrict dfs ]] =⇒ impl-sws-invar (dfs-code

x )
by (metis dfs-code-correct)

corollary dfs-code-preserves-dfs-invar :
[[ dfs-preserves-invar dfs; x ∈ V ; x /∈ dfs-restrict dfs ]] =⇒ dfs-impl-invar impl-dfs

(dfs-code x )
by (metis dfs-code-correct)

corollary dfs-code-finished :
[[ dfs-preserves-invar dfs; x ∈ V ; x /∈ dfs-restrict dfs ]] =⇒ dfs-finished dfs

(impl-sws-α (dfs-code x ))
by (metis dfs-code-correct)

— Helper function to return the list of visited nodes.
definition to-visited :: ( ′S , ′n, ′m) impl-sws ⇒ ′n list where

to-visited s = map fst (to-list (idisc s))

lemma to-visited-correct :
assumes invar : invar (idisc s)
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shows set (to-visited s) = discovered (impl-sws-α s)
proof −

have map-of (to-list (idisc s)) = discover (impl-sws-α s) using invar by (simp
add : correct)

hence dom (map-of (to-list (idisc s))) = discovered (impl-sws-α s) by simp
with dom-map-of-conv-image-fst [of to-list (idisc s)] show ?thesis unfolding

to-visited-def by simp
qed

— Helper function returning a tuple (node, δ node, ϕ node)
definition to-fd :: ( ′S , ′n, ′m) impl-sws ⇒ ( ′n × nat × nat) list where

to-fd s = map (λ n. let d = the (lookup n (idisc s)) in
let f = the (lookup n (ifinish s)) in
(n,d ,f )) (to-visited s)

lemma to-fd-correct :
assumes invars: invar (ifinish s) invar (idisc s)
and elem: (n, d , f ) ∈ set (to-fd s)
shows ϕ (impl-sws-α s) n = f ∧ δ (impl-sws-α s) n = d

using assms unfolding to-fd-def
by (auto simp add : to-visited-correct correct)
end

definition simple-impl-dfs :: (unit , ′n, ′m, ′n es) dfs-algorithm-impl where
simple-impl-dfs = (| dfs-impl-cond = λ-. True,

dfs-impl-action = λ- - -. (),
dfs-impl-post = λ- - -. (),
dfs-impl-remove = λ- - -. (),
dfs-impl-start = λ-. (),
dfs-impl-restrict = es-empty (),
dfs-impl-invar = λ-. True|)

lemma simple-impl-dfs-simps [simp]:
dfs-impl-cond simple-impl-dfs S
dfs-impl-action simple-impl-dfs S s x = ()
dfs-impl-post simple-impl-dfs S s x = ()
dfs-impl-remove simple-impl-dfs S s x = ()
dfs-impl-start simple-impl-dfs x = ()
dfs-impl-restrict simple-impl-dfs = ()
dfs-impl-invar simple-impl-dfs s

by (simp-all add : simple-impl-dfs-def )

locale SimpleDFS-Impl = DFS-Impl simple-dfs simple-impl-dfs - es-α es-invar
es-memb - - id
begin

lemma simple-preserves-invar :
impl-preserves-invar

by (intro impl-preserves-invarI ) simp-all
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lemma dfs-cond-impl-conv-simple:
dfs-cond-impl (S , n, d , f , c, st , wll) ≡ st 6= [] ∧ wll 6= []

unfolding dfs-cond-impl-def
by simp

lemmas dfs-start-impl-conv-simple = dfs-start-impl-def [unfolded simple-impl-dfs-simps]
lemmas dfs-step-impl-conv-simple = dfs-step-impl ′.simps[unfolded simple-impl-dfs-simps]
end

sublocale SimpleDFS-Impl ⊆ DFS-Impl-correct simple-dfs simple-impl-dfs - es-α
es-invar es-memb - - id
by unfold-locales (simp-all add : simple-preserves-invar)

end

theory Nested-DFS-Impl
imports Nested-DFS DFS-Impl
begin

locale SubDFS-Impl-def = set : StdSet sops +
map: StdMap mops +
finite-digraph V E

for sops :: ( ′n, ′s, ′Y ) set-ops-scheme
and mops :: ( ′n, nat , ′m, ′X ) map-ops-scheme
and V :: ′n set and E :: ( ′n × ′n) set +
fixes sup-st :: ′n ⇒ bool and restr :: ′s
assumes rs-invar [simp]: set .invar restr

begin

fun check-cycle-impl where
check-cycle-impl True - - = True
| check-cycle-impl False - e = sup-st e — if e is on the parent (=super) stack, we
have a cycle

definition sub-impl-dfs-invar where
sub-impl-dfs-invar s ≡ set .invar (snd (istate s)) ∧ set .α (snd (istate s)) = set .α

restr ∪ dom (map.α (ifinish s))

definition sub-impl-dfs :: (bool × ′s, ′n, ′m, ′s) dfs-algorithm-impl where
sub-impl-dfs = (| dfs-impl-cond = Not ◦ fst ,

dfs-impl-action = λ(f ,S ) s x . (check-cycle-impl f s x , S ),
dfs-impl-post = λ(f ,S ) - x . (f , set .ins-dj x S ),
dfs-impl-remove = λ(f ,S ) s x . (x = istart s ∧ sup-st x , S ),
dfs-impl-start = λ-. (False, restr),
dfs-impl-restrict = restr ,
dfs-impl-invar = sub-impl-dfs-invar |)

lemma sub-impl-dfs-simps[simp]:
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dfs-impl-cond sub-impl-dfs S ←→ ¬ (fst S )
dfs-impl-action sub-impl-dfs S s x = (check-cycle-impl (fst S ) s x , snd S )
dfs-impl-post sub-impl-dfs S s x = (fst S , set .ins-dj x (snd S ))
dfs-impl-remove sub-impl-dfs S s x = (x = istart s ∧ sup-st x , snd S )
dfs-impl-start sub-impl-dfs x = (False, restr)
dfs-impl-restrict sub-impl-dfs = restr
dfs-impl-invar sub-impl-dfs = sub-impl-dfs-invar

unfolding sub-impl-dfs-def
by (simp-all split : prod .split)

end

locale SubDFS-Impl = SubDFS-Impl-def sops mops V E ss rs +
DFS-Impl sub-dfs {x . ss x} (set .α rs) sub-impl-dfs mops set .α

set .invar set .memb V E fst
for sops :: ( ′n, ′s, ′Y ) set-ops-scheme
and mops :: ( ′n, nat , ′m, ′X ) map-ops-scheme
and V :: ′n set and E :: ( ′n × ′n) set
and ss :: ′n ⇒ bool and rs :: ′s

begin

lemma check-cycle-impl-correct :
check-cycle-impl S s e ←→ check-cycle {x . ss x} S s ′ e

by (cases S ) simp-all

lemma sub-impl-preserves-invar :
impl-preserves-invar

proof (rule impl-preserves-invarI )
case goal1 thus ?case by (simp add : sub-impl-dfs-invar-def dfs-start-impl-def

map.correct)
next
case goal2 hence length (istack s) = length (iwll s) using length-wl-eq-stack [OF

impl-sws-invar-constructable] by simp-all
with goal2 show ?case
proof (induction s rule: dfs-step-impl ′.induct)

case (goal1 s ′) let ?s = (S , n, d , f , c, x # xs, [] # ys) let ?αs = impl-sws-α
?s

from goal1 have constr : dfs-constructable (sub-dfs {x . ss x} (set .α rs)) ?αs
using impl-sws-invar-constructable by simp

from stack-implies-not-finished [OF this] stack-not-restricted [OF this] have
x-not : x /∈ dom (map.α f ) x /∈ set .α rs by (simp-all add : set .correct)

from goal1 have ifinish s ′ = map.update x c f and map.invar f using
impl-sws-invar-mapinvars[where s=?s] by simp-all

hence map.α (ifinish s ′) = (map.α f )(x 7→ c) by (simp add : map.correct)
hence dom (map.α (ifinish s ′)) = insert x (dom (map.α f )) by simp
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moreover from goal1 have set .α (snd S ) = set .α rs ∪ dom (map.α f ) and
S-inv : set .invar (snd S ) by (simp-all add : sub-impl-dfs-invar-def )

moreover with x-not have x-not-S : x /∈ set .α (snd S ) by simp

from goal1 have snd (istate s ′) = set .ins-dj x (snd S ) by simp
with S-inv x-not-S have set .invar (snd (istate s ′)) and set .α (snd (istate s ′))

= insert x (set .α (snd S )) by (simp-all add : set .correct)

ultimately show ?case by (simp add : sub-impl-dfs-invar-def )
qed (simp-all add : sub-impl-dfs-invar-def )

qed

end

sublocale SubDFS-Impl ⊆ DFS-Impl-correct sub-dfs {x . ss x} (set .α rs) sub-impl-dfs
mops set .α set .invar set .memb V E fst
by unfold-locales (simp-all add : check-cycle-impl-correct sub-impl-preserves-invar)

context SubDFS-Impl
begin

abbreviation sub-dfs-fun-impl ≡ dfs-fun-impl
abbreviation sub-dfs-code ≡ dfs-code
abbreviation sub-build-rel ≡ dfs-impl-build-rel

theorem sub-dfs-fun-impl-correct :
assumes x ∈ V and x /∈ set .α rs
shows sub-dfs-fun-impl x ≤ ⇓ sub-build-rel (SPEC (λs. state s ←→ sub-cycle
{x . ss x} (set .α rs) x ))
proof −

from assms(2 ) have x /∈ dfs-restrict (sub-dfs {x . ss x} (set .α rs)) by simp
note dfs-fun-impl-refine[OF assms(1 ) this]
also note dfs-fun-sub-dfs-correct [OF assms, of {x . ss x}]
finally show ?thesis .

qed

lemmas sub-dfs-fun-impl-correct-unfolded = sub-dfs-fun-impl-correct [unfolded sub-cycle-iff-in-sup-st ]

theorem sub-dfs-code-correct :
[[ x ∈ V ; x /∈ set .α rs; s = sub-dfs-code x ]] =⇒ fst (istate s) ←→ sub-cycle {x .

ss x} (set .α rs) x
using order-trans[OF dfs-code-refine sub-dfs-fun-impl-correct , of x ]
unfolding dfs-impl-build-rel-def
by (auto elim!: RETURN-ref-SPECD)

lemmas sub-dfs-code-correct-unfolded = sub-dfs-code-correct [unfolded sub-cycle-iff-in-sup-st ]

lemmas sub-dfs-code-preserves-invar = dfs-code-preserves-invar [OF sub-dfs-preserves-invar ]
lemmas sub-dfs-code-preserves-dfs-invar = dfs-code-preserves-dfs-invar [OF sub-dfs-preserves-invar ]
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lemma sub-dfs-code-finished-unfolded :
assumes x : x ∈ V x /∈ set .α rs
and s-def : s = sub-dfs-code x
and ¬ fst (istate s)
shows finished (impl-sws-α s) = {v . x = v ∨ x →\set .α rs+ v}

proof −
let ?DFS = sub-dfs {x . ss x} (set .α rs)
from 〈¬ fst (istate s)〉 have ¬ state (impl-sws-α s) by simp
moreover from dfs-code-finished [OF sub-dfs-preserves-invar ] x s-def have dfs-finished

?DFS (impl-sws-α s) by auto
ultimately have dfs-completed ?DFS (impl-sws-α s) unfolding dfs-completed-def

by simp
note completed-finished-eq-reachable[OF this]
moreover from dfs-code-constructable[OF sub-dfs-preserves-invar ] x s-def have

impl-sws-α s ∈ dfs-constr-from ?DFS x by simp
with constr-from-implies-start have start (impl-sws-α s) = x by blast
ultimately
show finished (impl-sws-α s) = {v . x = v ∨ x →\set .α rs+ v} by auto

qed
end

locale NestedDFS-pre = set : StdSet sops +
setA: set-memb setAα setAinvar setAmemb +
sws-impl mops V E σα +
finite-accepting-digraph V E setAα A

for sops :: ( ′n, ′s, ′Y ) set-ops-scheme
and setAα :: ′sA ⇒ ′n set and setAinvar :: ′sA ⇒ bool and setAmemb :: ′n ⇒
′sA ⇒ bool

and mops :: ( ′n, nat , ′m, ′X ) map-ops-scheme
and σα :: bool × ′s ⇒ bool × ′n set
and V :: ′n set and E :: ( ′n × ′n) set and A :: ′sA+
fixes γsuccs :: ′n ⇒ ′n list
defines σα-def : σα ≡ λ(b,s). (b, set .α s)
assumes ssuccs-correct : set (γsuccs y) = succs y
and ssuccs-distinct : distinct (γsuccs y)
and A-invar : setAinvar A

begin

lemma σα-simps[simp]:
fst (σα S ) ←→ fst S
snd (σα S ) = set .α (snd S )
σα (b, F ) = (b, set .α F )

unfolding σα-def
by (cases S , simp-all)+

end

locale NestedDFS-Impl-def = NestedDFS-pre sops - - - mops
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for sops :: ( ′n, ′s, ′Y ) set-ops-scheme
and mops :: ( ′n, nat , ′m, ′X ) map-ops-scheme +
fixes M :: (bool × ′n set , ′n) dfs-sws ⇒ ′n set
and γM :: (bool × ′s, ′n, ′m) impl-sws ⇒ ′n ⇒ bool
assumes M-correct : γM s = M (impl-sws-α s)
and M-defs:

∧
s. stack s 6= [] =⇒ hd (stack s) ∈ M s

∧
s. stack s 6= [] =⇒ M s

⊆ set (stack s)
begin

declare A-invar [simp]

definition sub-impl :: ( ′n ⇒ bool) ⇒ ′s ⇒ ′n ⇒ ′s option
where sub-impl ss R x ≡ let s = SubDFS-Impl .sub-dfs-code sops mops ss R

γsuccs x
in if fst (istate s) then None else Some (snd (istate s))

fun run-sub-dfs-impl where
run-sub-dfs-impl (True, F ) - - = (True, F )
| run-sub-dfs-impl (False, F ) s e = (if setAmemb e A then

case sub-impl (γM s) F e of
None ⇒ (True, F )
| Some F ′⇒ (False, F ′)

else (False, F ))

abbreviation nested-impl-invar ′ where
nested-impl-invar ′ ≡ set .invar ◦ snd

definition nested-impl-invar where
nested-impl-invar ≡ dfs-impl-state-invar nested-impl-invar ′

lemma nested-impl-invar-conv [simp]:
nested-impl-invar s ←→ set .invar (snd (istate s))

unfolding nested-impl-invar-def dfs-impl-state-invar-def
by simp

definition nested-impl-dfs :: (bool × ′s, ′n, ′m, ′n es) dfs-algorithm-impl where
nested-impl-dfs = (| dfs-impl-cond = λS . ¬ fst S ,

dfs-impl-action = λS - -. S ,
dfs-impl-post = run-sub-dfs-impl ,
dfs-impl-remove = λS - -. S ,
dfs-impl-start = λx . (False, set .empty ()),
dfs-impl-restrict = es-empty (),
dfs-impl-invar = nested-impl-invar |)

lemma nested-impl-dfs-simps[simp]:
dfs-impl-cond nested-impl-dfs S ←→ ¬ fst S
dfs-impl-post nested-impl-dfs = run-sub-dfs-impl
dfs-impl-action nested-impl-dfs S s x = S
dfs-impl-remove nested-impl-dfs S s x = S
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dfs-impl-start nested-impl-dfs x = (False, set .empty ())
dfs-impl-restrict nested-impl-dfs = es-empty ()
dfs-impl-invar nested-impl-dfs = nested-impl-invar

unfolding nested-impl-dfs-def
by simp-all

lemma sub-impl-correct :
assumes inv : set .invar R
and x : x ∈ V x /∈ set .α R
shows Option.map (set .α) (sub-impl ss R x ) = Option.map (λs. s ∪ set .α R)

(run-sub-dfs ′ {x . ss x} (set .α R) x )
proof −
from inv interpret sub!: SubDFS-Impl γsuccs sops mops V E ss R by unfold-locales

(simp-all add : ssuccs-distinct ssuccs-correct)
note sub = this
show ?thesis
proof (cases run-sub-dfs ′ {x . ss x} (set .α R) x )

case None with run-sub-dfs ′-correct [OF x ] have ∃ v . x →\set .α R+ v ∧ ss v
by simp

hence fst (istate (sub.sub-dfs-code x )) using sub sub.sub-dfs-code-correct-unfolded [OF
x ] by blast

with None show ?thesis unfolding sub-impl-def by simp
next

case (Some F ) def s ≡ sub.sub-dfs-code x
hence inv : sub.impl-sws-invar s using sub.sub-dfs-code-preserves-invar x by

simp

from s-def have ∗: set .α (snd (istate s)) = dom (map.α (ifinish s)) ∪ set .α
R

using sub.sub-dfs-code-preserves-dfs-invar x by (auto simp add : sub.sub-impl-dfs-invar-def )

from Some have run-sub-dfs ′ {x . ss x} (set .α R) x 6= None by simp
with run-sub-dfs ′-correct [OF x ] have nis: ¬ fst (istate s) using sub.sub-dfs-code-correct-unfolded [OF

x ] s-def by auto
with sub.sub-dfs-code-finished-unfolded x s-def have finished (sub.impl-sws-α

s) = {v . x = v ∨ x →\set .α R+ v} by simp
with sub.impl-sws-invar-mapinvars[OF inv ] have dom (map.α (ifinish s)) =

{v . x = v ∨ x →\set .α R+ v} by (simp add : map.correct)
with nis Some show ?thesis using run-sub-dfs ′-finished [OF x Some] ∗ un-

folding sub-impl-def s-def by auto
qed

qed

lemma sub-impl-set-invar :
assumes inv : set .invar R
and x : x ∈ V x /∈ set .α R
and some: sub-impl ss R x = Some F ′

shows set .invar F ′

proof −
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from inv interpret sub!: SubDFS-Impl γsuccs sops mops V E ss R by unfold-locales
(simp-all add : ssuccs-distinct ssuccs-correct)

def s ≡ sub.sub-dfs-code x
hence set .invar (snd (istate s)) using sub.sub-dfs-code-preserves-dfs-invar x by

(auto simp add : sub.sub-impl-dfs-invar-def )
with s-def some show ?thesis unfolding sub-impl-def by (cases fst (istate s))

simp-all
qed

lemma run-sub-dfs-impl-correct ′:
assumes x ∈ set (istack s) nested-impl-invar s nested-dfs-invar (impl-sws-α s)
and constr : dfs-constructable (nested-dfs M ) (impl-sws-α s)
shows σα (run-sub-dfs-impl (istate s) s x ) = run-sub-dfs M (σα (istate s))

(impl-sws-α s) x
proof (cases istate s)

case (Pair b F ) hence run-sub-dfs M (b, set .α F ) (impl-sws-α s) x = σα
(run-sub-dfs-impl (b, F ) s x ) (is ?L = ?R)

proof (cases b)
case True hence ?L = (b, set .α F ) by simp
also from True have ... = ?R by simp
finally show ?thesis .

next
case False with Pair have ¬ has-cycle (impl-sws-α s) by simp
with assms have set (istack s) ∩ set .α F = {} unfolding nested-dfs-invar-def

by (simp add : Pair)
with assms have x /∈ set .α F by auto
hence xnF :x /∈ snd (b, set .α F ) by simp

from False have nb: ¬ fst (b, set .α F ) by simp

from constr stack-subset-verts have set (istack s) ⊆ V by fastforce
with assms have xV : x ∈ V by auto

from assms Pair have F-inv : set .invar F by simp
note sub-impl-correct = sub-impl-correct [OF F-inv xV 〈x /∈ set .α F 〉, where

ss = γM s]

show ?thesis using nb xV xnF
proof (cases rule: run-sub-dfs-casesE [where s=impl-sws-α s and M =M ])

case same hence ¬ setAmemb x A by (simp add : setA.memb-correct)
hence ?R = (b, set .α F ) by (simp add : False)
with same show ?thesis by simp

next
case (cycle v) hence setAmemb x A by (simp add : setA.memb-correct)

moreover
from cycle have run-sub-dfs ′ {x . γM s x} (set .α F ) x = None by (auto simp

add : set .correct M-correct Collect-def )
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hence sub-impl (γM s) F x = None using sub-impl-correct by simp

ultimately show ?thesis using cycle False by simp
next

case (no-cycle F ′) hence setAmemb x A by (simp add : setA.memb-correct)

moreover
from no-cycle have run-sub-dfs ′ {x . γM s x} (set .α F ) x = Some F ′ by

(simp add : set .correct M-correct Collect-def )
hence Option.map set .α (sub-impl (γM s) F x ) = Some (F ′ ∪ set .α F )

using sub-impl-correct by simp
ultimately show ?thesis using no-cycle False by auto

qed
qed
with Pair show ?thesis by simp

qed

lemma run-sub-dfs-preserves-invar :
assumes x ∈ set (istack s) nested-impl-invar ′ (istate s)
and constr : dfs-constructable (nested-dfs M ) (impl-sws-α s)
shows nested-impl-invar ′ (run-sub-dfs-impl (istate s) s x )

proof −
obtain b F where bF : istate s = (b, F ) by (cases istate s) auto
with assms have F-inv : set .invar F by simp
with bF show ?thesis
proof (cases b)

case False with F-inv bF show ?thesis
proof (cases setAmemb x A)

case True with F-inv False bF show ?thesis
proof (cases sub-impl (γM s) F x )

case (Some F ′)
note F-inv

moreover from constr stack-subset-verts have set (istack s) ⊆ V by
fastforce

with assms have x ∈ V by auto
moreover from constr have nested-dfs-invar (impl-sws-α s) using dfs-constructable-invarI [OF

- nested-dfs-preserves-invar ] M-defs by simp
with False bF have set (istack s) ∩ set .α F = {} unfolding nested-dfs-invar-def

by simp
with assms have x /∈ set .α F by auto
ultimately have set .invar F ′ using sub-impl-set-invar [OF - - - Some] by

metis+
with Some False True bF show ?thesis by simp

qed simp
qed simp

qed simp
qed

end
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locale NestedDFS-Impl = NestedDFS-Impl-def - - - σα V E - γsuccs sops mops +
DFS-Impl (nested-dfs M ) nested-impl-dfs mops es-α es-invar

es-memb V E σα γsuccs
for sops :: ( ′n, ′s, ′Y ) set-ops-scheme
and mops :: ( ′n, nat , ′m, ′X ) map-ops-scheme
and V :: ′n set and E :: ( ′n × ′n) set
and γsuccs :: ′n ⇒ ′n list
and σα :: bool × ′s ⇒ bool × ′n set

begin

lemma run-sub-dfs-impl-correct :
assumes x ∈ set (istack s) nested-impl-invar s impl-sws-invar s
shows σα (run-sub-dfs-impl (istate s) s x ) = run-sub-dfs M (σα (istate s))

(impl-sws-α s) x
proof −
from assms have dfs-constructable (nested-dfs M ) (impl-sws-α s) and nested-dfs-invar

(impl-sws-α s)
using impl-sws-invar-dfs-invar [OF nested-dfs-preserves-invar ] M-defs by auto

with run-sub-dfs-impl-correct ′ assms show ?thesis by blast
qed

lemma nested-impl-preserves:
impl-preserves-invar

using nested-impl-dfs-simps(7 )[unfolded nested-impl-invar-def ]
proof (rule state-impl-preserves-invarI )

case goal2 hence dfs-constructable (nested-dfs M ) (impl-sws-α s) by auto
note run-sub-dfs-preserves-invar [OF goal2 (1 ,2 ) this]
thus ?case by simp

qed (simp-all add : set .correct)
end

sublocale NestedDFS-Impl ⊆ DFS-Impl-correct nested-dfs M nested-impl-dfs mops
es-α es-invar es-memb V E σα
by unfold-locales (simp-all add : run-sub-dfs-impl-correct set .correct nested-impl-preserves)

locale BasicDFS-Impl-def = NestedDFS-pre
begin

definition basicM-impl s ≡ λx . x = hd (istack s)

lemma basicM-impl-correct :
basicM-impl s = basicM (impl-sws-α s)

unfolding basicM-impl-def basicM-def
by simp (metis Collect-def singleton-conv)
end

sublocale BasicDFS-Impl-def ⊆ NestedDFS-Impl-def - - - - - - - - - - basicM
basicM-impl
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by unfold-locales (simp-all add : basicM-impl-correct σα-def )

locale BasicDFS-Impl = BasicDFS-Impl-def

sublocale BasicDFS-Impl ⊆ NestedDFS-Impl - - - - basicM basicM-impl
by unfold-locales (simp-all add : ssuccs-correct ssuccs-distinct)

context BasicDFS-Impl
begin

abbreviation basic-impl-dfs ≡ nested-impl-dfs
abbreviation basic-dfs-fun-impl ≡ dfs-fun-impl
abbreviation basic-dfs-code ≡ dfs-code
abbreviation basic-build-rel ≡ dfs-impl-build-rel

theorem basic-dfs-fun-impl-correct :
assumes x ∈ V
shows basic-dfs-fun-impl x ≤ ⇓ basic-build-rel (SPEC (λs. has-cycle s ←→ cycle

basicM x ))
proof −

note dfs-fun-impl-refine[OF assms, folded basic-dfs-def ]
also note dfs-fun-basic-dfs-correct [OF assms]
finally show ?thesis by (simp add : basic-dfs-def )

qed

lemmas basic-dfs-fun-impl-correct-unfolded = basic-dfs-fun-impl-correct [unfolded
basic-cycle-iff-cycle]

lemmas basic-dfs-code-preserves-invar = dfs-code-preserves-invar [folded basic-dfs-def ,
OF basic-dfs-preserves-invar ]
lemmas basic-dfs-code-preserves-dfs-invar = dfs-code-preserves-dfs-invar [folded basic-dfs-def ,
OF basic-dfs-preserves-invar ]

theorem basic-dfs-code-correct :
[[ x ∈ V ; s = basic-dfs-code x ]] =⇒ fst (istate s) ←→ cycle basicM x

using order-trans[OF dfs-code-refine basic-dfs-fun-impl-correct , of x ]
unfolding dfs-impl-build-rel-def
by (auto elim!: RETURN-ref-SPECD)

lemmas basic-dfs-code-correct-unfolded = basic-dfs-code-correct [unfolded basic-cycle-iff-cycle]
end

locale HPYDFS-Impl-def = NestedDFS-pre
begin

definition hpyM-impl s ≡ λx . set .memb x (set .from-list (istack s))

lemma hpyM-impl-correct :
hpyM-impl s = hpyM (impl-sws-α s)
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unfolding hpyM-impl-def hpyM-def
by (simp add : set .correct) (metis (full-types) Collect-conj-eq Collect-def Int-absorb
Int-def )
end

sublocale HPYDFS-Impl-def ⊆ NestedDFS-Impl-def - - - - - - - - - - hpyM
hpyM-impl
by unfold-locales (simp-all add : hpyM-impl-correct σα-def )

locale HPYDFS-Impl = HPYDFS-Impl-def

sublocale HPYDFS-Impl ⊆ NestedDFS-Impl - - - - hpyM hpyM-impl
by unfold-locales (simp-all add : ssuccs-correct ssuccs-distinct)

context HPYDFS-Impl
begin

abbreviation hpy-impl-dfs ≡ nested-impl-dfs
abbreviation hpy-dfs-fun-impl ≡ dfs-fun-impl
abbreviation hpy-dfs-code ≡ dfs-code
abbreviation hpy-build-rel ≡ dfs-impl-build-rel

theorem hpy-dfs-fun-impl-correct :
assumes x ∈ V
shows hpy-dfs-fun-impl x ≤ ⇓ hpy-build-rel (SPEC (λs. has-cycle s ←→ cycle

hpyM x ))
proof −

note dfs-fun-impl-refine[OF assms, folded hpy-dfs-def ]
also note dfs-fun-hpy-dfs-correct [OF assms]
finally show ?thesis by (simp add : hpy-dfs-def )

qed

lemmas hpy-dfs-fun-impl-correct-unfolded = hpy-dfs-fun-impl-correct [unfolded hpy-cycle-iff-cycle]

lemmas hpy-dfs-code-preserves-invar = dfs-code-preserves-invar [folded hpy-dfs-def ,
OF hpy-dfs-preserves-invar ]
lemmas hpy-dfs-code-preserves-dfs-invar = dfs-code-preserves-dfs-invar [folded hpy-dfs-def ,
OF hpy-dfs-preserves-invar ]

theorem hpy-dfs-code-correct :
[[ x ∈ V ; s = hpy-dfs-code x ]] =⇒ fst (istate s) ←→ cycle hpyM x

using order-trans[OF dfs-code-refine hpy-dfs-fun-impl-correct , of x ]
unfolding dfs-impl-build-rel-def
by (auto elim!: RETURN-ref-SPECD)

lemmas hpy-dfs-code-correct-unfolded = hpy-dfs-code-correct [unfolded hpy-cycle-iff-cycle]
end

locale SEDFS-Impl-def = HPYDFS-Impl-def
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begin

fun SE-remove-impl :: (bool × ′b) ⇒ (bool × ′b, ′a, ′e) impl-sws ⇒ ′a ⇒ (bool ×
′b) where

SE-remove-impl (True, F ) - - = (True, F )
| SE-remove-impl (False, F ) s x = ((setAmemb x A ∨ setAmemb (hd (istack s))
A) ∧ map.lookup x (ifinish s) = None, F )

definition SE-impl-dfs :: (bool × ′b, ′a, ′e, ′a es) dfs-algorithm-impl where
SE-impl-dfs = nested-impl-dfs (| dfs-impl-remove := SE-remove-impl |)

lemma SE-impl-dfs-simps[simp]:
dfs-impl-cond SE-impl-dfs S ←→ ¬ fst S
dfs-impl-post SE-impl-dfs = run-sub-dfs-impl
dfs-impl-action SE-impl-dfs S s x = S
dfs-impl-remove SE-impl-dfs = SE-remove-impl
dfs-impl-start SE-impl-dfs x = (False, set .empty ())
dfs-impl-restrict SE-impl-dfs = es-empty ()
dfs-impl-invar SE-impl-dfs = nested-impl-invar

unfolding SE-impl-dfs-def
by simp-all
end

locale SEDFS-Impl = SEDFS-Impl-def sops - - - mops σα V E - γsuccs +
DFS-Impl SE-dfs SE-impl-dfs mops es-α es-invar es-memb V E

σα γsuccs
for sops :: ( ′n, ′s, ′Y ) set-ops-scheme
and mops :: ( ′n, nat , ′m, ′X ) map-ops-scheme
and V :: ′n set and E :: ( ′n × ′n) set
and γsuccs :: ′n ⇒ ′n list
and σα :: bool × ′s ⇒ bool × ′n set

begin

lemma SE-remove-correct :
assumes x-in-d : map.lookup x (idisc s) 6= None
and inv : impl-sws-invar s
shows σα (SE-remove-impl (istate s) s x ) = SE-remove (σα (istate s)) (impl-sws-α

s) x
proof (cases istate s)
case (Pair b F ) hence SE-remove (b, set .α F ) (impl-sws-α s) x = σα (SE-remove-impl

(b, F ) s x ) (is ?L = ?R)
proof (cases b)

case True hence ?L = (b, set .α F ) by simp
also from True have ... = ?R by simp
finally show ?thesis .

next
case False
from inv have constr : dfs-constructable SE-dfs (impl-sws-α s) by auto
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from inv have map.lookup x (ifinish s) = None ←→ x /∈ finished (impl-sws-α
s) by (auto simp add : map.correct impl-sws-invar-mapinvars)

also have ... ←→ x ∈ set (istack s)
proof −

from inv x-in-d have d : x ∈ discovered (impl-sws-α s) by (auto simp add :
map.correct impl-sws-invar-mapinvars)

thus ?thesis by (bestsimp dest !: discovered-not-finished-implies-stack [OF con-
str d ] intro!: stack-implies-not-finished [OF constr ])

qed
finally show ?thesis by (simp add : setA.memb-correct map.correct False)

qed
thus ?thesis by (simp add : Pair)

qed

lemma SE-impl-preserves:
impl-preserves-invar

using SE-impl-dfs-simps(7 )[unfolded nested-impl-invar-def ]
proof (rule state-impl-preserves-invarI )

case goal2 hence constr : dfs-constructable SE-dfs (impl-sws-α s) by auto
show ?case
proof (cases has-cycle (impl-sws-α s))
case False with SE-to-nested ′ constr have dfs-constructable hpy-dfs (impl-sws-α

s) by blast
with goal2 run-sub-dfs-preserves-invar show ?thesis by (simp add : hpy-dfs-def )

next
case True with goal2 show ?thesis by (cases istate s) simp

qed
next

case goal3 thus ?case by (cases istate s, cases fst (istate s)) simp-all
qed (simp-all add : set .correct)

lemma run-sub-dfs-impl-correct :
assumes x ∈ set (istack s) nested-impl-invar s impl-sws-invar s
shows σα (run-sub-dfs-impl (istate s) s x ) = run-sub-dfs hpyM (σα (istate s))

(impl-sws-α s) x
proof −

from assms have constr : dfs-constructable SE-dfs (impl-sws-α s) and inv :
nested-dfs-invar (impl-sws-α s)

using impl-sws-invar-dfs-invar [OF SE-dfs-preserves-invar ] by auto
show ?thesis
proof (cases has-cycle (impl-sws-α s))
case False with constr SE-to-nested ′ have dfs-constructable hpy-dfs (impl-sws-α

s) by blast
with inv run-sub-dfs-impl-correct ′ assms show ?thesis by (simp add : hpy-dfs-def )
next

case True thus ?thesis by (cases istate s) simp
qed

qed
end
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sublocale SEDFS-Impl ⊆ DFS-Impl-correct SE-dfs SE-impl-dfs mops es-α es-invar
es-memb V E σα
by unfold-locales (simp-all add : run-sub-dfs-impl-correct SE-remove-correct set .correct
SE-impl-preserves)

context SEDFS-Impl
begin

abbreviation SE-dfs-fun-impl ≡ dfs-fun-impl
abbreviation SE-dfs-code ≡ dfs-code
abbreviation SE-build-rel ≡ dfs-impl-build-rel

theorem SE-dfs-fun-impl-correct :
assumes x ∈ V
shows SE-dfs-fun-impl x ≤ ⇓ SE-build-rel (SPEC (λs. has-cycle s ←→ SE-cycle

x ))
proof −

note dfs-fun-impl-refine[OF assms]
also note dfs-fun-SE-dfs-correct [OF assms]
finally show ?thesis by simp

qed

lemmas SE-dfs-fun-impl-correct-unfolded = SE-dfs-fun-impl-correct [unfolded SE-cycle-iff-cycle]

lemmas SE-dfs-code-preserves-invar = dfs-code-preserves-invar [OF SE-dfs-preserves-invar ]
lemmas SE-dfs-code-preserves-dfs-invar = dfs-code-preserves-dfs-invar [OF SE-dfs-preserves-invar ]

theorem SE-dfs-code-correct :
[[ x ∈ V ; s = SE-dfs-code x ]] =⇒ fst (istate s) ←→ SE-cycle x

using order-trans[OF dfs-code-refine SE-dfs-fun-impl-correct , of x ]
unfolding dfs-impl-build-rel-def
by (auto elim!: RETURN-ref-SPECD)

lemmas SE-dfs-code-correct-unfolded = SE-dfs-code-correct [unfolded SE-cycle-iff-cycle]
end
end
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